
Intelligent Backtracking Techniques for Job Shop SchedulingYalin Xiong Norman SadehThe Robotics InstituteCarnegie Mellon University5000 Forbes AvenuePittsburgh, PA 15213 Katia SycaraAbstractThis paper studies a version of the job shopscheduling problem in which some operationshave to be scheduled within non-relaxabletime windows (i.e. earliest/latest possiblestart time windows). This problem is a well-known NP-complete Constraint SatisfactionProblem (CSP). A popular method for solv-ing these types of problems consists in us-ing depth-�rst backtrack search. Our earlierwork focused on developing e�cient consis-tency enforcing techniques and e�cient vari-able/value ordering heuristics to improve thee�ciency of this procedure. In this paper,we combine these techniques with new look-back schemes that help the search procedurerecover from so-called deadend search states(i.e. partial solutions that cannot be com-pleted without violating some constraints).More speci�cally, we successively describethree intelligent backtracking schemes: Dy-namic Consistency Enforcement dynamicallyenforces higher levels of consistency in se-lected critical subproblems, Learning FromFailure dynamically modi�es the order inwhich variables are instantiated based onearlier conicts, and Heuristic Backjumpinggives up searching areas of the search spacethat appear too di�cult. These schemes areshown to (1) further reduce the average com-plexity of the search procedure, (2) enableour system to e�ciently solve problems thatcould not be solved otherwise due to excessivecomputational cost, and (3) be more e�ectiveat solving job shop scheduling problems thanother look-back schemes advocated in the lit-erature.

1 IntroductionThis paper is concerned with the design of recoveryschemes for incremental scheduling approaches thatsometimes require undoing earlier scheduling decisionsin order to complete the construction of a feasibleschedule.Job shop scheduling deals with the allocation of re-sources over time to perform a collection of tasks.The job shop scheduling model studied in this paperfurther allows for operations that have to be sched-uled within non-relaxable time windows (i.e. earli-est possible start time/latest possible �nish time win-dows). This problem is a well-known NP-completeConstraint Satisfaction Problem (CSP) [11]. Exam-ples of such problems include factory scheduling prob-lems, in which some operations have to be performedwithin one or several shifts, spacecraft mission schedul-ing problems, in which time windows are determinedby astronomical events over which we have no control,factory rescheduling problems, in which a small set ofoperations need to be rescheduled without revising theschedule of other operations, etc.A generic approach to solving CSPs relies on depth-�rst backtrack search [24, 13, 2]. Using this paradigm,scheduling problems are solved through the iterativeselection of a variable (i.e. an operation) and the ten-tative assignment of a value (i.e. a reservation) to thatvariable. If in the process of constructing a solution,a partial solution is reached that cannot be completedwithout violating some of the problem constraints, oneor several earlier assignments have to be undone. Thisprocess of undoing earlier assignments is referred toas backtracking. It deteriorates the e�ciency of thesearch procedure and increases the time required tocome up with a solution. While the worst-case com-plexity of backtrack search is exponential, several tech-niques have been proposed in the literature to reduceits average-case complexity [7]:� Consistency Enforcing Schemes:[15] prune thesearch space from alternatives that cannot par-

ticipate in a global solution . There is gener-ally a tradeo� between the amount of consistencyenforced in each search state1 and the savingsachieved in search time.� Look-ahead Schemes: variable/value orderingheuristics[2, 14, 16, 7, 9, 20] help judiciously de-cide which variable to instantiate next and whichvalue to assign to that variable. By �rst instan-tiating di�cult variables, the system increases itschances of completing the current partial solutionwithout backtracking [14, 9, 20]. Good value or-dering heuristics reduce backtracking by selectingvalues that are expected to participate in a largenumber of solutions [7, 20].� Look-back Schemes:[22, 8, 12, 5] While it is possi-ble to design consistency enforcing schemes andlook-ahead schemes that are, on the average,very good at e�ciently reducing backtracking,it is generally impossible to e�ciently guaranteebacktrack-free search. Look-back schemes are de-signed to help the system recover from deadendstates and, if possible, learn from past mistakes .Our earlier work focused on developing e�cient con-sistency enforcing techniques and e�cient look-aheadtechniques for job shop scheduling CSPs [17, 18, 9, 23,21, 20, 19]. In this paper, we combine these techniqueswith new look-back schemes. These schemes are shownto further reduce the average complexity of the searchprocedure. They also enable our system to e�cientlysolve problems that could not be e�ciently solved oth-erwise. Finally, experimental results indicate that theschemes described in this paper are more e�ective atsolving job shop scheduling problems than other look-back schemes advocated in the literature.The simplest deadend recovery strategy consists in go-ing back to the most recently instantiated variablewith at least one alternative value left, and assign-ing a di�erent value to that variable. This strat-egy is known as chronological backtracking. Often thesource of the current deadend is not the most recentassignment but one performed earlier. By changingassignments that are irrelevant to the current con-ict, chronological backtracking often returns to sim-ilar deadend states. When this happens, search issaid to be thrashing. Thrashing can be reduced us-ing backjumping schemes that attempt to backtrackall the way to one of the variables at the source ofthe conict [12]. Search e�ciency can be further im-proved by learning from past mistakes. For instance, asystem can record earlier conicts in the form of newconstraints that will prevent it from repeating earliermistakes [22, 8]. Dependency-directed backtracking is1A search state is associated with each partial solution.Each search state de�nes a new CSP whose variables arethe variables that have not yet been instantiated and whoseconstraints are the initial problem constraints along withconstraints reecting current assignments.

a technique incorporating both backjumping and con-straint recording [22]. Although dependency-directedbacktracking can greatly reduce the number of searchstates that need to be explored, this scheme is oftenimpractical due to its exponential worst-case complex-ity (both in time and space). For this reason, sim-pler techniques have been developed that approximatedependency-directed backtracking. Graph-based back-jumping reduces the amount of book-keeping requiredby fullblown backjumping by assuming that any twovariables directly connected by a constraint may havebeen assigned conicting values [5]. N-th order deepand shallow learning only record conicts involving Nor fewer variables. [4].Graph-based backjumping works best on CSPs withsparse constraint graphs [5]. Instead, job shop schedul-ing problems have highly interconnected constraintgraphs. Furthermore graph-based backjumping doesnot increase search e�ciency when used in combina-tion with forward checking [14] mechanisms or strongerconsistency enforcing mechanisms such as those en-tailed by job shop scheduling problems [20]. Experi-ments reported at the end of this paper also suggestthat N-th order deep and shallow learning techniquesoften fail to improve search e�ciency when applied tojob shop scheduling problems. This is because thesetechniques use constraint size as the only criterion todecide whether or not to record earlier failures. Whenthey limit themselves to small-size conicts, they failto record some important constraints. When they donot, their complexities become prohibitive.Instead this paper presents three look-back schemeswhich have yielded very good results on job shopscheduling problems:1. Dynamic Consistency Enforcement (DCE): a se-lective dependency-directed scheme that dynam-ically focuses its e�ort on critical resource sub-problems,2. Learning From Failure (LFF): an adaptive schemethat suggests new variable orderings based on ear-lier conicts,3. Heuristic Backjumping (HB) a scheme that givesup searching areas of the search space that requiretoo much work.Related work in scheduling includes that of Prosserand Burke who use N-th order shallow learning tosolve one-machine scheduling problems [3], and thatof Badie et al. whose system implements a variationof deep learning in which a minimum set is heuristi-cally selected as the culprit [1].The remainder of this paper is organized as follows.Section 2 provides a more formal de�nition of the jobshop CSP. Section 3 describes the backtrack searchprocedure considered in this study. Sections 4, 5 and6 successively describe each of the three backtracking

schemes developed for this study. Experimental resultsare presented in section 7. Section 8 summarizes thecontributions of this paper.2 Job Shop Constraint SatisfactionProblem and Search ProcedureThe job shop scheduling problem requires schedulinga set of jobs J = fj1; :::; jng on a set of physical re-sources RES = fR1; :::;Rmg. Each job jl consists ofa set of operations Ol = fOl1; :::;Olnlg to be scheduledaccording to a process routing that speci�es a partialordering among these operations (e.g. Oli BEFOREOlj).In the job shop CSP studied in this paper, each jobjl has a release date rdl and a due-date ddl betweenwhich all its operations have to be performed. Eachoperation Oli has a �xed duration duli and a variablestart time stli. The domain of possible start times ofeach operation is initially constrained by the releaseand due dates of the job to which the operation be-longs. If necessary, the model allows for additionalunary constraints that further restrict the set of ad-missible start times of each operation, thereby de�ningone or several time windows within which an operationhas to be carried out (e.g. one or several shifts in fac-tory scheduling). In order to be successfully executed,each operation Oli requires pli di�erent resources (e.g.a milling machine and a machinist) Rlij (1 � j � pli),for each of which there may be a pool of physical re-sources from which to choose,
lij = frlij1; :::; rlijqlijg,with rlijk 2 RES(1 � k � qlij) (e.g. several possiblemilling machines).More formally, the problem can be de�ned as follows:VARIABLES:A vector of variables is associated with each operation,Oli(1 � l � n; 1 � i � nl), which includes:1. the operation start time, stli, and2. each resource requirement, Rlij(1 � j � pli) forwhich the operation has several alternatives.CONSTRAINTS:The non-unary constraints of the problem are of twotypes:1. Precedence constraints de�ned by the processroutings translate into linear inequalities of thetype: stli + duli � stlj (i.e. Oli BEFORE Olj);2. Capacity constraints that restrict the use of eachresource to only one operation at a time trans-late into disjunctive constraints of the form:(8p8qRkip 6= Rljq)_stki +duki � stlj_stlj+dulj � stki .These constraints simply express that, unless they

use di�erent resources, two operations Oki and Oljcannot overlap 2.Additionally, there are unary constraints restrictingthe set of possible values of individual variables. Theseconstraints include non-relaxable due dates and releasedates, between which all operations in a job need tobe performed. The model can actually accommodateany type of unary constraint that further restricts theset of possible start times of an operation. Time isassumed discrete, i.e. operation start times and endtimes can only take integer values. Finally, each re-source requirement Rlij has to be selected from a setof resource alternatives,
lij � RES.OBJECTIVE:In the job shop CSP studied in this paper, the ob-jective is to come up with a feasible solution as fastas possible. Notice that this objective is di�erent fromsimply minimizing the number of search states visited.It also accounts for the time spent by the system de-ciding which search state to explore next.3 The Search ProcedureA depth-�rst backtrack search procedure is assumed,in which search is interleaved with the application ofconsistency enforcing mechanisms and variable/valueordering heuristics that attempt to steer clear of dead-end states. Search proceeds according to the followingsteps:1. If all operations have been scheduled then stop,else go on to 2;2. Apply the consistency enforcing procedure;3. If a deadend is detected then backtrack (i.e. selectan alternative if there is one left and go back to1, else stop and report that the problem is infea-sible), else go on to step 4;4. Select the next operation to be scheduled (variableordering heuristic);5. Select a promising reservation for that operation(value ordering heuristic);6. Create a new search state by adding the new reser-vation assignment to the current partial schedule.Go back to 1.The default consistency enforcing scheme and vari-able/value ordering heuristics used in the procedureare the ones described in [20]:Consistency Enforcement: The consistency enforc-ing procedure is a hybrid procedure that di�erenti-ates between precedence constraints and capacity con-straints. It guarantees that backtracking only occurs2These constraints have to be generalized when dealingwith resources of capacity larger than one.

as the result of capacity constraint violations. Es-sentially, consistency with respect to precedence con-straints is enforced by updating in each search statea pair of earliest/latest possible start times for eachunscheduled operation. Consistency enforcement withrespect to capacity constraints tends to be signi�cantlymore expensive due to the disjunctive nature of theseconstraints. For capacity constraints, a forward check-ing type of consistency checking is generally carriedout by the system. Whenever a resource is allocatedto an operation over some time interval, the forwardchecking procedure checks the set of remaining pos-sible start times of other operations requiring thatresource, and removes those start times that wouldconict with the new assignment. The system fur-ther checks for consistency with respect to a set ofredundant capacity constraints, which can be quicklyenforced in each search state. This includes checkingthat no two unscheduled operations totally rely on thesame resource over overlapping time intervals 3.Variable/Value Ordering Heuristics: The de-fault variable/value ordering heuristics used by thesearch procedure are the Operation Resource Reliance(ORR) variable ordering heuristic and Filtered Sur-vivable Schedules value ordering heuristic described in[20]. The ORR variable ordering heuristic aims at re-ducing backtracking by �rst scheduling di�cult opera-tions, namely operations whose resource requirementsare expected to conict with the resource requirementsof other operations. The FSS value ordering heuris-tic is a least constraining value ordering heuristic. Itattempts to further reduce backtracking by assigningreservations that are expected to be compatible witha large number of schedules.These default consistency enforcing schemes and vari-able/value ordering heuristics have been reported tooutperform several other schemes described in theliterature, both generic CSP heuristics and special-ized heuristics designed for similar scheduling prob-lems [20, 19]. These are e�cient schemes that seem toprovide a good compromise between the e�orts spentenforcing consistency, ordering variables, or rankingassignments for a variable and the actual savings ob-tained in search time. Nevertheless, because the jobshop CSP is an NP-complete problem, these proce-dures are not su�cient to guarantee backtrack-freesearch.The remainder of this paper describes new backtrack-ing schemes that help the system recover from dead-end states. It will be seen that, when the defaultconsistency enforcing scheme and/or variable order-ing scheme are not su�cient to stay clear of deadends,look-back mechanisms can be devised that will modifythese schemes so as to avoid repeating past mistakes(i.e.so as to avoid reaching similar deadend states).3See [20] for further details.

4 Dynamic Consistency Enforcement(DCE)Backtracking is generally an indication that thedefault consistency enforcing scheme and/or vari-able/value ordering heuristics used by the search pro-cedure are insu�cient to deal with the subproblemsat hand. For this reason, when it reaches a deadend,the system will generally start thrashing if it keeps onusing the same default mechanisms4. Theoretically,thrashing could be eliminated by enforcing full consis-tency in each search state. Clearly such an approach isprohibitively expensive. Instead, if one could heuristi-cally identify small subproblems that are likely to be atthe source of the conict and just check for consistencyamong the variables in these subproblems, thrashingcould often be eliminated at a lower computationalcost. This is the approach described in this section. Abacktracking scheme called Dynamic Consistency En-forcement (DCE) is presented that dynamically iden-ti�es small critical resource subproblems expected tobe at the source of the current deadend. Experimen-tal results reported in Section 7 suggest that, by selec-tively checking for consistency with respect to capacityconstraints among the operations in these small sub-problems, this scheme is often able to quickly recoverfrom deadends.When a deadend is detected, DCE checks for consis-tency with respect to capacity constraints in criticalresource subproblems, in order to approximate the fullextent of the current deadend and decide how far tobacktrack. The critical subproblems used by DCE con-sist of groups of operations participating in the currentconict along with groups of critical operations identi-�ed at an earlier stage. Below, we refer to the group(s)of operations participating in the current conict, asthe Partial Conicting Set of operations (PCS): theseare the operations identi�ed by the default consistencyenforcing mechanism as having no possible reserva-tions left in the current search state. The objective ofthe backtracking scheme is to identify the most recentassignment(s), which, if undone, will produce a con-sistent search state, i.e. a search state in which opera-tions in PCS have reservations that do not seem to con-ict with earlier assignments. To this end, DCE checksfor consistency with respect to capacity constraints be-tween operations in PCS and critical operations in aso-called Dangerous Group (DG) of operations identi-�ed earlier. At each level (while backtracking), the setconsisting of the union of the PCS, the DG and the setof undone operations up to that level is referred to asthe Deadend Operation Set (DOS). While backrtack-ing, DCE performs full consistency checking with re-4Experiments reported in [20, 19] consistency displayeda dual behavior: the vast majority of the schedulingproblems were either solved without backtracking whatso-ever, or required an exponential amount of chronologicalbacktracking.

spect to capacity constraints among operations in theDOS. Generally, because the DOS may contain oper-ations requiring di�erent resources, the backtrackingscheme checks for consistency with respect to capacityconstraints in several resource subproblems 5. Duringbacktracking the PCS and the DG remain the sameand the DOS varies as more undone operations areunioned. At the end of a backtracking episode, DOShas maximum size, call it DOSmax. Assuming thatthe procedure was able to backtrack to a consistentsearch state 6, DOSmax contains all the operations atthe origin of the deadend (and often more). DOSmaxis then saved for later use in a data structure referredto as the Former Dangerous Groups (FDG). Detailsregarding the management of this data structure areprovided in subsection 4.1. If a related backtrackingepisode is later encountered by the system, DOSmaxcan then be retrieved and serve as the DG for this newepisode 7. If a subsequent backtracking episode is un-related to any of the previous ones, then the DG forthis episode is empty.The behavior of the DCE procedure is illustrated inFigure 1. Each node represents a search state, la-beled by the operation that was last scheduled toreach that state, the resource allocated to that op-eration, and the operation's start time. In this ex-ample, search is assumed to have reached a deadendat depth D5. Operations in the PCS are those op-erations whose domains of possible start times wereidenti�ed as empty at depth D5 due to capacity con-straint violations. The resources associated with op-erations in the PCS are called the critical resources.Although a PCS can in general contain operations as-sociated with more than one critical resources, it isoften the case that the operations in PCS require thesame resource (i.e., the deadend happened as a resultof capacity constraint violations on a single resource).Upon encountering a deadend at D5, DCE backtracksto D4 and performs full consistency checking with re-spect to capacity constraints on the set of operationsDOS4 = PCS [DG [Om If there are still capac-ity constraint violations at D4, operation Ol is un-done, and full consistency checking is performed onthe new DOS, namely DOS3 = PCS [DG [Ol; OmThe procedure is repeated until a consistent DOS is5Because full consistency checking is expensive, if thisset is too large, two approaches can be taken to limit com-putational cost: (1) full consistency checking can be per-formed only for a subset of the DOS, or (2) k-consistency[10] can be performed, where k is some predeterminednumber.6Clearly, there is no guarantee that the search state inwhich DCE stops backtracking is a consistent search state.Experimental results suggest however that this is often thecase.7Two backtracking episodes are de�ned to be related ifthey are due to capacity constraint violations on the sameresource and over close time intervals. Otherwise, they areunrelated.

found (DOSmax = DOS1 in this example). At thispoint, the DOSmax is saved to be used in the DG forthe next related backtracking episode.4.1 Management of Dangerous GroupsThe purpose of the Former Dangerous Groups of oper-ations (FDG) maintained by the system is to help de-termine more e�ciently and more precisely the scopeof each deadend by focusing on critical resource sub-problems. Each group of operations in the FDG con-sists of operations that are in high contention for theallocation of a same resource. Accordingly, whenever,a conict is detected that involves some of the opera-tions in one group, the backtracking procedure checksfor consistency among all operations in that group.The groups of operations in the FDG are built fromthe Deadend Operation Sets (DOS) obtained at theend of previous backtracking episodes (DOSmax). In-deed, whenever a backtracking episode is completed,DOSmax is expected to contain all the conictingoperations at the origin of this episode. Generally,DOSmax may involve one or several resource subprob-lems (i.e. groups of operations requiring the same re-source). Each one of these subproblems is merged withrelated subproblems currently stored in the FDG. Ifthere is no related group in FDG, the new group isseparately added to the data structure.As operations are scheduled, they are removed fromthe FDG.4.2 Additional \Watch Dog" ConsistencyChecksBecause groups of operations in the FDG are likelydeadend candidates, our system further performs sim-ple \watch dog" consistency checks on these dynamicgroups of operations. More speci�cally, for each groupG of operations in FDG, the system performs a roughconsistency check to see if the resource can still accom-modate all the operations in the group. This is doneusing redundant constraints of the form: Max(lstli +duli; Oli 2 G)�Min(estli; Oli 2 G) �POli2G duli whereestli and lstli are respectively the earliest and latestpossible start times of Oli in the current search state.Whenever such a constraint is violated, an inconsis-tency has been detected. Though very simple and in-expensive, these checks enable to catch inconsistenciesinvolving large groups of operations that would not beimmediately detected by the default consistency mech-anisms 8. Clearly, some inconsistencies can still escapethese rough checks.8Notice that, when a \watch dog" check fails, PCS isempty.

D

D

D

D

D

1

2

3

4

5

ii i

j j j j j j’ ’ ’

k k k
k k k’ ’ ’

l l l

m m m

PCS U DG

PCS U DG

PCS U DG

PCS U DG

m

m l

m l k

m l k j

i j k l m/ / / /

O R T

O R T

O R T

O R T

O R T

O R T

O R T

U {O }

U {O ,O ,O }

U {O ,O ,O ,O }

U {O ,O }

O = O = O = OO =

4

3

2

1 max

= DOS

= DOS

= DOS

= DOS = DOS

Figure 1: The DCE Backtracking Scheme.5 Learning From Failures (LFF)Encounter of a deadend is also often an indicationthat the default variable ordering was not adequatefor dealing with the subproblem at hand. Typicallythe operations participating in the deadend turn outto be more di�cult than the operations selected bythe default variable ordering heuristic. It is thereforea good idea to �rst schedule the operations partici-pating in the conict that was just resolved. Learn-ing From Failure (LFF) is an adaptive procedure thatoverrides the default variable ordering in the presenceof conicts.After recovering from a deadend (i.e. after backtrack-ing all the way to an apparently consistent searchstate), LFF uses the Partial Conicting Set (PCS) ofthe deadend to reorganize the ordering in which op-erations will be rescheduled and make sure that op-erations in the PCS are scheduled �rst. This is doneusing a quasi-stack on which operations in the PCS arepushed in descending order of domain size (operationswith more available start times go �rst)9. This ordersoperations in terms of their criticality (most criticaloperation on top) so as to ensure that, as S is popped,the most critical operations will be scheduled �rst. Aslong as S is non-empty, operations from S are poppedand successively scheduled, thus overriding the defaultvariable ordering.6 A Backjumping HeuristicTraditionalbacktrack search procedures only undo decisions thathave been proven to be wrong/inconsistent. Provingthat an assignment is inconsistent with others can bevery expensive, especially when dealing with large con-icts. Graph-based backjumping and N-th order shal-low/deep learning attempt to reduce the complexity of9If a candidate operation is already on S, i.e. it is en-countered for a second time, it is pushed again as thoughit had a smaller domain.

fullblown dependency-directed backtracking by eithersimplifying the process of identifying inconsistent de-cisions (e.g. based on the topology of the constraintgraph) or restricting the size of the conicts that canbe detected. The Dynamic Consistency Enforcement(DCE) procedure described in Section 6 also aims atreducing the complexity of identifying the source ofa conict by dynamically focusing its e�ort on smallcritical subproblems. None of these techniques can beexpected to perform well when dealing with large com-plex 10 conicts, either because they are too expensiveto run or because they deliberately overlook large con-icts. Large complex conicts can force the searchprocedure to thrash, even when using procedures suchas DCE. In these situations, it may be worth undo-ing decisions that are not provably wrong but simplyappear overly restrictive. Clearly, the resulting searchprocedure is no longer complete and may fail to �ndsolutions to feasible problems.Texture measures such as the ones described in [9]could be used to estimate the tightness of di�erentsearch states, for instance, by estimating the numberof global solutions compatible with each search state11. Assignments leading to much tighter search stateswould be prime candidates to be undone. The Back-jumping Heuristic (BH) used in this study is simplerand, yet, often seems to get the job done. Wheneverthe system starts thrashing, this heuristic backjumpsall the way to the �rst search state and simply triesthe next best value (i.e. reservation) for the critical op-eration in that state (i.e. the �rst operation selectedby the variable ordering heuristic). BH considers thatthe search procedure is thrashing when more than �assignments had to be undone since the procedure be-gan or since the last time the system was thrashing,10There are conicts involving large numbers of variablesthat are easy to catch, as illustrated by the watch dogchecks described in Section 4.11A search state whose partial solution is compatiblewith a large number of global solutions is a loosely con-strained search state, whereas one compatible with a smallnumber of global solutions is tightly constrained.

where � is a parameter of the search procedure.7 Experimental ResultsTwo sets of 40 scheduling problems each were gen-erated that di�ered in the number of major bottle-necks (one and two major bottlenecks respectively).Each problem had 50 operations and 5 resources (i.e.,10 jobs). All jobs were released at the same timeand had to be completed by the same due date. Ineach problem, the common due date was set so thatall operations had to be scheduled within a rathertight estimate of the problem makespan (see [20] fordetails). These are the conditions in which the de-fault variable/value ordering and consistency enforc-ing schemes work least e�ectively (see study reportedin [20]). Among these 80 problems, we only reportperformance on problems in which the default schemeswere not su�cient to guarantee backtrack-free search12. This leaves 16 scheduling problems with one bot-tleneck, and 15 with two bottlenecks.We successively report the results of two studies. The�rst study compares the performance of three com-plete backtrack schemes: chronological backtracking,2d-order deep learning, and the procedure combiningthe DCE and LFF backtrack schemes described in Sec-tion 4 and 5. The second study compares a completesearch procedure using the DCE and LFF schemeswith an incomplete search procedure combining DCEand LFF with the Backjumping Heuristic (BH) de-scribed in Section 6.7.1 Comparison of Complete SearchProceduresThe two intelligent backtracking techniques, DCE andLFF are complementary and were used in combina-tion, denoted by DCE & LFF, for experimentation toassess performance13. Each of the problems in theexperiment set was run using chronological backtrack-ing, 2d-order deep learning [6] and the DCE & LFFprocedures advocated in Section 4 and 5. The resultsreported here were obtained using a search limit of500 nodes and a time limit of 1800 seconds (except fordeep learning, for which the time limit was increasedto 36,000 seconds 14). All CPU times reported belowwere obtained on a DECstation 5000 running Knowl-12Clearly, performance in the absence of backtracking isuninteresting, since our backtracking schemes would neverbe invoked, i.e. CPU time remains unchanged.13Besides the experiments reported below, additional ex-periments were performed to assess the bene�ts of usingDCE and LFF separately. These experiments show thatboth techniques contribute to the improvements reportedin this section.14This was motivated by the fact that our implementa-tion of deep learning may not be optimal.

edge Craft on top of Allegro Common Lisp 15.Results for the one-bottleneck problems are reportedin Table 1. Chronological backtracking solved only 4problems out of 16. Interestingly enough, deep learn-ing showed no improvement over chronological back-tracking either in the number of problems solved orin CPU time. As a matter of fact, deep learning waseven too slow to �nd solutions to some of the prob-lems solved by chronological backtracking. This is at-tributed to the fact that the constraints in job shopscheduling are more tightly interacting than those inthe zebra problem, where the improvement of deeplearning over naive backtracking was originally ascer-tained. On the other hand, DCE & LFF solved 10problems out of 16 (2 out of these 10 problems weresuccessfully proven infeasible). As expected, by focus-ing on a small number of critical subproblems, DCE& LFF is able to discover larger more useful conictsthan 2d-order deep learning, while requiring only afraction of the time required by deep learning. Anotherobservation is that DCE & LFF expanded fewer searchstates than chronological backtracking for the prob-lems that chronological backtracking solved. However,each of the DCE & LFF expansions took slightly moreCPU time, due to the higher level of consistency en-forcement.Results for the set of two-bottleneck problems arereported in Table 2. Similar results are observedhere again: deep learning shows no improvementover chronological backtracking and seems signi�-cantly slower. The di�erence between chronologicalbacktracking and DCE&LFF is not as impressive asin the �rst set of experiments. This is probably be-cause both bottlenecks may have capacity conicts atthe same time. DCE & LFF may then have problemsdetermining which one to consider �rst. As can beseen from Table 2, chronological backtracking solved 7out of 15 problems, whereas DCE & LFF solved 8 outof 15. On the problems solved by both chronologicalbacktracking and DCE & LFF, DCE & LFF turnedout to be slightly faster overall.7.2 Complete vs. Incomplete SearchProceduresTable 3 and 4 compare the performance of the com-plete search procedure using DCE & LFF against thatof an incomplete search procedure using DCE & LFFin combination with the Backjumping Heuristic (BH)described in Section 6. While DCE & LFF was ableto solve only 10 out of 16 one-bottleneck problems and8 out 15 two-bottleneck problems, DCE & LFF com-bined with BH solved 14 one-bottleneck problems and13 two-bottleneck problems. The only one-bottleneck15Comparison between C programs and Knowledge Craftprograms suggests that the code would run 10 to 20 timesfaster in C.

Table 1: Results of One-bottleneck Experiments.
 No. of CPU Result No. of CPU Result No. of CPU Result
 Nodes (sec) Nodes (sec) Nodes (sec)
 1 500 1427 F 122 1232 S* 500 5756 F
 2 500 1587 F 500 1272 F 500 5834 F
 3 74 148 S 63 117 S 25 36000 F
 4 69 152 S 52 120 S 69 391 S
 5 500 1407 F 65 134 S 500 11762 F
 6 500 1469 F 500 1486 F 500 8789 F
 7 500 1555 F 59 130 S 500 9681 F
 8 500 1705 F 41 145 S* 500 9560 F
 9 53 108 S 53 102 S 53 122 S
10 500 1529 F 500 1536 F 500 9114 F
11 500 1460 F 85 1800 F 500 14611 F
12 500 1694 F 500 1131 F 500 21283 F
13 51 109 S 51 81 S 51 88 S
14 500 1762 F 63 138 S 500 18934 F
15 500 1798 F 69 142 S
16 500 1584 F 500 1183 F

Exp.
No.

Chronological
Backtracking DCE & LFF Deep Learning

S: Solved ; F: Failure; S*: Proved infeasible
Time Limit: 1800 sec (Except Deep Learning)
Node Limit: 500

500 9600 F
 65 36000 FTable 2: Results of Two-bottleneck Experiments

Exp.
No.

Chronological
Backtracking DCE & LFF Deep Learning

S: Solved ; F: Failure; S*: Proved infeasible

No. of CPU Result No. of CPU Result No. of CPU Result
Nodes (sec) Nodes (sec) Nodes (sec)

1 500 1139 F 113 1800 F 18 36000 F
2 500 1444 F 425 1800 F 115 36000 F
3 84 175 S 109 202 S 84 811 S
4 56 123 S 56 112 S 56 213 S
5 51 101 S 51 113 S 13 36000 F
6 500 1531 F 321 1800 F 328 36000 F
7 500 1775 F 500 1357 F 500 2793 F
8 52 102 S 52 115 S 33 36000 F
9 500 1634 F 247 974 S 500 1519 F
10 500 1676 F 91 1800 F 26 36000 F
11 66 163 S 59 104 S 66 2240 S
12 56 139 S 58 104 S 58 281 S
13 54 129 S 52 91 S 54 28900 S
14 500 1676 F 346 1800 F
15 500 1522 F 324 1800 F

Time Limit : 1800 sec. (36000 sec. for Deep Learning)
Node Limit : 500

500 9031 F
296 36000 Fproblems that were not solved by DCE & LFF & BHare the two infeasible problems identi�ed by the com-plete search procedure DCE & LFF. This is hardly asurprise. While the addition of BH to DCE & LFFenables the search procedure to solve a larger numberof problems, it also makes the procedure incomplete(i.e. infeasible problems can no longer be identi�ed).Additional experiments combining BH with a simplechronological backtracking scheme also indicate thatboth DCE & LFF and BH contribute to the goodperformance of DCE & LFF & BH. Results on two-bottleneck problems (See Table 4) suggest that theimpact of the backjumping heuristic is particularly ef-fective on these problems. This is attributed to thefact that two-bottleneck problems give rise to morecomplex conicts. Identifying the assignments partic-ipating in these more complex conicts may simplybe too di�cult for any exact backtracking scheme towork. Instead, because it can undo assignments that

are not provably wrong but simply appear overly re-strictive, BH seems more e�ective at dealing with thesemore complex conicts.8 Concluding RemarksWe have presented three intelligent backtrackingschemes for the job shop scheduling CSP:1. Dynamic Consistency Enforcement (DCE), adependency-directed scheme, that dynamically fo-cuses its e�ort on small critical subproblems,2. Learning From Failure (LFF), which modi�es theorder in which variables are instantiated based onearlier conicts, and3. a Backjumping Heuristic which, when thrashingoccurs, can undo assignments that are not prov-ably inconsistent but appear overly restrictive.

Table 3: Results of One-bottleneck Experiments.
Exp.
No.

S: Solved ; F: Failure; S*: Proved infeasible

DCE & LFF DCE & LFF & BH

No. of CPU Result No. of CPU Result
 Nodes (sec) Nodes (sec)

 1 122 1232 S* 350 1800 F
 2 500 1272 F 203 1124 S
 3 63 117 S 63 123 S
 4 52 120 S 52 116 S
 5 65 134 S 65 144 S
 6 500 1486 F 127 424 S
 7 59 130 S 59 125 S
 8 41 145 S* 457 1800 F
 9 53 108 S 53 100 S
10 500 1536 F 67 170 S
11 85 1800 F 74 170 S
12 500 1131 F 164 616 S
13 51 81 S 51 92 S
14 63 138 S 63 149 S
15 69 142 S 69 158 S
16 500 1183 F 156 524 S

Time Limit: 1800 sec. Node Limit: 500Table 4: Results of Two-bottleneck Experiments
Exp.
No.

S: Solved ; F: Failure; S*: Proved infeasible

DCE & LFF DCE & LFF & BH

No. of CPU Result No. of CPU Result
 Nodes (sec) Nodes (sec)

Time Limit: 1800 sec. Node Limit: 500

 1 113 1800 F 151 456 S
 2 425 1800 F 371 1780 S
 3 109 202 S 95 210 S
 4 56 112 S 56 108 S
 5 51 113 S 51 97 S
 6 321 1800 F 420 1800 F
 7 500 1357 F 159 534 S
 8 52 115 S 52 96 S
 9 247 974 S 423 1705 S
10 91 1800 F 440 1800 F
11 59 104 S 59 113 S
12 58 104 S 58 112 S
13 52 91 S 52 102 S
14 346 1800 F 239 512 S
15 324 1800 F 73 195 SThe signi�cance of this research is twofold:1. Job shop scheduling problems with non-relaxabletime windows have multiple applications, includ-ing both manufacturing and space-related appli-cations. We have shown that our schemes com-bined with powerful techniques that we had pre-viously developed (1) further reduce the averagecomplexity of backtrack search, and (2) enableour system to e�ciently solve problems that couldnot be solved otherwise due to excessive com-putational cost. While the results reported inthis study were obtained on problems that re-quire �nding a feasible schedule, the backtrackingschemes presented in this paper can also be usedon optimization versions of the scheduling prob-lem.

2. This research also points to the de�ciencies ofdependency-directed backtracking schemes advo-cated earlier in the literature. In particular, com-parison with N-th order deep learning indicatesthat this technique failed (in our set of experi-ments) to improve performance when applied tojob shop scheduling problems. This is becauseN-th order deep learning uses constraint size asthe only criterion to decide whether or not torecord earlier failures. When deep learning lim-its itself to small-size conicts, it fails to recordsome important constraints; when it considersconicts of larger size, its computational complex-ity becomes prohibitive. Traditional backtrackingschemes never undo assignments unless they canprove that they are at the source of the conict.When dealing with large complex conicts, prov-ing that a particular assignment should be un-done can be very expensive. Instead, our experi-ments suggest that, when thrashing cannot easilybe avoided, it is often a better idea to use back-jumping heuristics that undo decisions simply be-cause they appear overly restrictive. When usingsuch heuristics, search completeness can no longerbe guaranteed.AcknowledgementsThis research was supported, in part, by the DefenseAdvanced Research Projects Agency under contractF30602-91-C-0016 and, in part, by the Robotics Insti-tute at Carnegie Mellon University.References[1] C. Badie, G. Bel, E. Bensana, and G. Verfaillie.Operations research and arti�cial intelligence co-operation to solve scheduling problems. In FirstInternational Conference on Expert Planning Sys-tems, 1990.[2] J.R. Bitner and E.M. Reingold. Backtrack pro-gramming techniques. Communications of theACM, 18(11):651{655, 1975.[3] Peter Burke and Patrick Prosser. A distributedasynchronous system for predictive and reactivescheduling. Technical Report AISL-42, Depart-ment of Computer Science, University of Strath-clyde, 26 Richmond Street, Glasgow, GI IXH,United Kingdom, October 1989.[4] Rina Dechter. Learning while searching in con-straint satisfaction problems. In Proceedings ofthe Sixth National Conference on Arti�cial Intel-ligence, pages 178{183, 1986.[5] Rina Dechter. Enhancement schemes for con-straint processing: Backjumping, learning, andcutset decomposition. Arti�cial Intelligence,41:273{312, 1989.

[6] Rina Dechter, Itay Meiri, and Judea Pearl. Tem-poral constraint networks. In Proceedings of theFirst International Conference on Principles ofKnowledge Representation and Reasoning, 1989.[7] Rina Dechter and Judea Pearl. Network-basedheuristics for constraint satisfaction problems.Arti�cial Intelligence, 34(1):1{38, 1988.[8] John Doyle. A truth maintenance system. Arti�-cial Intelligence, 12(3):231{272, 1979.[9] Mark S. Fox, Norman Sadeh, and Can Baykan.Constrained heuristic search. In Proceedings ofthe Eleventh International Joint Conference onArti�cial Intelligence, pages 309{315, 1989.[10] E.C. Freuder. A su�cient condition for backtrack-free search. Journal of the ACM, 29(1):24{32,1982.[11] M.R. Garey and D.S. Johnson. Computers andIntractability: A Guide to the Theory of NP-Completeness. Freeman and Co., 1979.[12] John Gaschnig. Performance measurement andanalysis of certain search algorithms. Techni-cal Report CMU-CS-79-124, Computer ScienceDepartment, Carnegie Mellon University, Pitts-burgh, PA 15213, 1979.[13] Solomon W. Golomb and Leonard D. Baumert.Backtrack programming. Journal of the Associ-ation for Computing Machinery, 12(4):516{524,1965.[14] Robert M. Haralick and Gordon L. Elliott.Increasing tree search e�ciency for constraintsatisfaction problems. Arti�cial Intelligence,14(3):263{313, 1980.[15] A.K. Mackworth and E.C. Freuder. The complex-ity of some polynomial network consistency algo-rithms for constraint satisfaction problems. Arti-�cial Intelligence, 25(1):65{74, 1985.[16] Jr. Paul W. Purdom. Search rearrangement back-tracking and polynomial average time. Arti�cialIntelligence, 21:117{133, 1983.[17] N. Sadeh and M.S. Fox. Preference propagationin temporal/capacity constraint graphs. Techni-cal Report CMU-CS-88-193, Computer ScienceDepartment, Carnegie Mellon University, Pitts-burgh, PA 15213, 1988. Also appears as RoboticsInstitute technical report CMU-RI-TR-89-2.[18] N. Sadeh and M.S. Fox. Focus of attention inan activity-based scheduler. In Proceedings of theNASA Conference on Space Telerobotics, January1989.[19] N. Sadeh and M.S. Fox. Variable and value or-dering heuristics for hard constraint satisfactionproblems: an application to job shop schedul-ing. Technical Report CMU-RI-TR-91-23, TheRobotics Institute, Carnegie Mellon University,Pittsburgh, PA 15213, 1992.

[20] Norman Sadeh. Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling. PhD the-sis, School of Computer Science, Carnegie MellonUniversity, Pittsburgh, PA 15213, March 1991.[21] Norman Sadeh and Mark S. Fox. Variable andvalue ordering heuristics for activity-based job-shop scheduling. In Proceedings of the FourthInternational Conference on Expert Systems inProduction and Operations Management, HiltonHead Island, S.C., pages 134{144, 1990.[22] R. Stallman and G. Sussman. Forward reasoningand dependency-directed backtracking in a sysemfor computer-aided circuit analysis. Arti�cial In-telligence, 9:135{196, 1977.[23] K. Sycara, S. Roth, N. Sadeh, and M. Fox.Distributed constrained heuristic search. IEEETransactions on System, Man and Cybernetics,21(6), 1991.[24] R.J. Walker. An Enumerative Technique fora Class of Combinatorial Problems, volume 10,chapter 7, pages 91{94. American MathematicalSociety, Rhode Island, 1960.

