Intelligent Backtracking Techniques for Job Shop Scheduling

Yalin Xiong

Norman Sadeh

Katia Sycara

The Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract

This paper studies a version of the job shop
scheduling problem in which some operations
have to be scheduled within non-relaxable
time windows (i.e. earliest/latest possible
start time windows). This problem is a well-
known NP-complete Constraint Satisfaction
Problem (CSP). A popular method for solv-
ing these types of problems consists in us-
ing depth-first backtrack search. Our earlier
work focused on developing efficient consis-
tency enforcing techniques and efficient vari-
able/value ordering heuristics to improve the
efficiency of this procedure. In this paper,
we combine these techniques with new look-
back schemes that help the search procedure
recover from so-called deadend search states
(i.e. partial solutions that cannot be com-
pleted without violating some constraints).
More specifically, we successively describe
three intelligent backtracking schemes: Dy-
namic Consistency Enforcement dynamically
enforces higher levels of consistency in se-
lected critical subproblems, Learning From
Failure dynamically modifies the order in
which variables are instantiated based on
earlier conflicts, and Heuristic Backjumping
gives up searching areas of the search space
that appear too difficult. These schemes are
shown to (1) further reduce the average com-
plexity of the search procedure, (2) enable
our system to efficiently solve problems that
could not be solved otherwise due to excessive
computational cost, and (3) be more effective
at solving job shop scheduling problems than
other look-back schemes advocated in the lit-
erature.

1 Introduction

This paper 1s concerned with the design of recovery
schemes for incremental scheduling approaches that
sometimes require undoing earlier scheduling decisions
in order to complete the construction of a feasible
schedule.

Job shop scheduling deals with the allocation of re-
sources over time to perform a collection of tasks.
The job shop scheduling model studied in this paper
further allows for operations that have to be sched-
uled within non-relaxable time windows (i.e. earli-
est possible start time/latest possible finish time win-
dows). This problem is a well-known NP-complete
Constraint Satisfaction Problem (CSP) [11]. Exam-
ples of such problems include factory scheduling prob-
lems, in which some operations have to be performed
within one or several shifts, spacecraft mission schedul-
ing problems; in which time windows are determined
by astronomical events over which we have no control,
factory rescheduling problems, in which a small set of
operations need to be rescheduled without revising the
schedule of other operations, etc.

A generic approach to solving CSPs relies on depth-
first backtrack search [24, 13, 2]. Using this paradigm,
scheduling problems are solved through the iterative
selection of a variable (i.e. an operation) and the ten-
tative assignment of a value (i.e. a reservation) to that
variable. If in the process of constructing a solution,
a partial solution 1s reached that cannot be completed
without violating some of the problem constraints, one
or several earlier assignments have to be undone. This
process of undoing earlier assignments is referred to
as backtracking. It deteriorates the efficiency of the
search procedure and increases the time required to
come up with a solution. While the worst-case com-
plexity of backtrack search is exponential, several tech-
niques have been proposed in the literature to reduce
its average-case complexity [7]:

o Consistency Enforcing Schemes:[15] prune the
search space from alternatives that cannot par-

ticipate in a global solution . There is gener-
ally a tradeoff between the amount of consistency
enforced in each search state’ and the savings
achieved in search time.

o Look-ahead Schemes: variable/value ordering
heuristics[2, 14, 16, 7, 9, 20] help judiciously de-
cide which variable to instantiate next and which
value to assign to that variable. By first instan-
tiating difficult variables; the system increases its
chances of completing the current partial solution
without backtracking [14, 9, 20]. Good value or-
dering heuristics reduce backtracking by selecting
values that are expected to participate in a large
number of solutions [7, 20].

o Look-back Schemes:[22, 8, 12, 5] While it is possi-
ble to design consistency enforcing schemes and
look-ahead schemes that are, on the average,
very good at efficiently reducing backtracking,
it is generally impossible to efficiently guarantee
backtrack-free search. Look-back schemes are de-
signed to help the system recover from deadend
states and, if possible, learn from past mistakes .

Our earlier work focused on developing efficient con-
sistency enforcing techniques and efficient look-ahead
techniques for job shop scheduling CSPs [17, 18, 9, 23,
21, 20, 19]. In this paper, we combine these techniques
with new look-back schemes. These schemes are shown
to further reduce the average complexity of the search
procedure. They also enable our system to efficiently
solve problems that could not be efficiently solved oth-
erwise. Finally, experimental results indicate that the
schemes described in this paper are more effective at
solving job shop scheduling problems than other look-
back schemes advocated in the literature.

The simplest deadend recovery strategy consists in go-
ing back to the most recently instantiated variable
with at least one alternative value left, and assign-
ing a different value to that variable. This strat-
egy is known as chronological backtracking. Often the
source of the current deadend is not the most recent
assignment but one performed earlier. By changing
assignments that are irrelevant to the current con-
flict, chronological backtracking often returns to sim-
ilar deadend states. When this happens, search is
said to be thrashing. Thrashing can be reduced us-
ing backjumping schemes that attempt to backtrack
all the way to one of the variables at the source of
the conflict [12]. Search efficiency can be further im-
proved by learning from past mistakes. For instance, a
system can record earlier conflicts in the form of new
constraints that will prevent it from repeating earlier
mistakes [22, 8]. Dependency-directed backtracking is

1 A search state is associated with each partial solution.
Each search state defines a new CSP whose variables are
the variables that have not yet been instantiated and whose
constraints are the initial problem constraints along with
constraints reflecting current assignments.

a technique incorporating both backjumping and con-
straint recording [22]. Although dependency-directed
backtracking can greatly reduce the number of search
states that need to be explored, this scheme is often
impractical due to its exponential worst-case complex-
ity (both in time and space). For this reason, sim-
pler techniques have been developed that approximate
dependency-directed backtracking. Graph-based back-
Jumping reduces the amount of book-keeping required
by fullblown backjumping by assuming that any two
variables directly connected by a constraint may have
been assigned conflicting values [5]. N-th order deep
and shallow learning only record conflicts involving N
or fewer variables. [4].

Graph-based backjumping works best on CSPs with
sparse constraint graphs [5]. Instead, job shop schedul-
ing problems have highly interconnected constraint
graphs. Furthermore graph-based backjumping does
not increase search efficiency when used in combina-
tion with forward checking [14] mechanisms or stronger
consistency enforcing mechanisms such as those en-
tailed by job shop scheduling problems [20]. Experi-
ments reported at the end of this paper also suggest
that N-th order deep and shallow learning techniques
often fail to improve search efficiency when applied to
job shop scheduling problems. This 1s because these
techniques use constraint size as the only criterion to
decide whether or not to record earlier failures. When
they limit themselves to small-size conflicts, they fail
to record some important constraints. When they do
not, their complexities become prohibitive.

Instead this paper presents three look-back schemes
which have yielded very good results on job shop
scheduling problems:

1. Dynamic Consistency Enforcement (DCE): a se-
lective dependency-directed scheme that dynam-
ically focuses its effort on critical resource sub-
problems,

2. Learning From Failure (LFF): an adaptive scheme
that suggests new variable orderings based on ear-
lier conflicts,

3. Heuristic Backjumping (HB) a scheme that gives
up searching areas of the search space that require
too much work.

Related work in scheduling includes that of Prosser
and Burke who use N-th order shallow learning to
solve one-machine scheduling problems [3], and that
of Badie et al. whose system implements a variation
of deep learning in which a minimum set is heuristi-
cally selected as the culprit [1].

The remainder of this paper is organized as follows.
Section 2 provides a more formal definition of the job
shop CSP. Section 3 describes the backtrack search
procedure considered in this study. Sections 4, 5 and
6 successively describe each of the three backtracking

schemes developed for this study. Experimental results
are presented in section 7. Section 8 summarizes the
contributions of this paper.

2 Job Shop Constraint Satisfaction
Problem and Search Procedure

The job shop scheduling problem requires scheduling
a set of jobs J = {j1,...,Jn} on a set of physical re-
sources RES = {Ry,...,R;,}. Each job j; consists of
a set of operations O' = {01, ...,0}, } to be scheduled
according to a process routing that specifies a partial
ordering among these operations (e.g. O! BEFORE
0l).

J

In the job shop CSP studied in this paper, each job
ji has a release date rd; and a due-date dd; between
which all its operations have to be performed. Each
operation O} has a fixed duration du! and a variable
start time st!. The domain of possible start times of
each operation is initially constrained by the release
and due dates of the job to which the operation be-
longs. If necessary, the model allows for additional
unary constraints that further restrict the set of ad-
missible start times of each operation, thereby defining
one or several time windows within which an operation
has to be carried out (e.g. one or several shifts in fac-
tory scheduling). In order to be successfully executed,
each operation O} requires p! different resources (e.g.
a milling machine and a machinist) Rﬁj (1<j<ph,
for each of which there may be a pool of physical re-
sources from which to choose, Qﬁj = {rll»]»l, ""rzl'jqij}’
with rll»]»k € RES(1 <k < qll»]») (e.g. several possible
milling machines).

More formally, the problem can be defined as follows:

VARIABLES:

A vector of variables is associated with each operation,
Ol(1 <1< n,1<i<mn), which includes:

!

;, and

1. the operation start time, st

2. each resource requirement, Rﬁj(l < j < ph for
which the operation has several alternatives.

CONSTRAINTS:

The non-unary constraints of the problem are of two
types:

1. Precedence constraints defined by the process
routings translate into linear inequalities of the
type: sti+ dul < st;» (i.e. O! BEFORE O});

2. Capacity constraints that restrict the use of each
resource to only one operation at a time trans-
late into disjunctive constraints of the form:

k 1 k k 1y ol 1 k
(VPVqR;, # R,)Vsti +du; < stjVsti+du; < stj.
These constraints simply express that, unless they

use different resources, two operations OF and O}
cannot overlap 2.

Additionally, there are unary constraints restricting
the set of possible values of individual variables. These
constraints include non-relaxable due dates and release
dates, between which all operations in a job need to
be performed. The model can actually accommodate
any type of unary constraint that further restricts the
set of possible start times of an operation. Time is
assumed discrete, i.e. operation start times and end
times can only take integer values. Finally, each re-
source requirement Rﬁj has to be selected from a set

of resource alternatives, Qﬁj C RES.
OBJECTIVE:

In the job shop CSP studied in this paper, the ob-
jective is to come up with a feasible solution as fast
as possible. Notice that this objective is different from
simply minimizing the number of search states visited.
It also accounts for the time spent by the system de-
ciding which search state to explore next.

3 The Search Procedure

A depth-first backtrack search procedure is assumed,
in which search is interleaved with the application of
consistency enforcing mechanisms and variable/value
ordering heuristics that attempt to steer clear of dead-
end states. Search proceeds according to the following
steps:

1. If all operations have been scheduled then stop,
else go on to 2;

2. Apply the consistency enforcing procedure;

3. If a deadend is detected then backtrack (i.e. select
an alternative if there is one left and go back to
1, else stop and report that the problem is infea-
sible), else go on to step 4;

4. Select the next operation to be scheduled (variable
ordering heuristic);

5. Select a promising reservation for that operation
(value ordering heuristic);

6. Create a new search state by adding the new reser-
vation assignment to the current partial schedule.

Go back to 1.

The default consistency enforcing scheme and vari-
able/value ordering heuristics used in the procedure
are the ones described in [20]:

Consistency Enforcement: The consistency enforc-
ing procedure is a hybrid procedure that differenti-
ates between precedence constraints and capacity con-
straints. It guarantees that backtracking only occurs

?These constraints have to be generalized when dealing
with resources of capacity larger than one.

as the result of capacity constraint violations. Es-
sentially, consistency with respect to precedence con-
straints is enforced by updating in each search state
a pair of earliest/latest possible start times for each
unscheduled operation. Consistency enforcement with
respect to capacity constraints tends to be significantly
more expensive due to the disjunctive nature of these
constraints. For capacity constraints, a forward check-
ing type of consistency checking is generally carried
out by the system. Whenever a resource is allocated
to an operation over some time interval, the forward
checking procedure checks the set of remaining pos-
sible start times of other operations requiring that
resource, and removes those start times that would
conflict with the new assignment. The system fur-
ther checks for consistency with respect to a set of
redundant capacity constraints, which can be quickly
enforced in each search state. This includes checking
that no two unscheduled operations totally rely on the
same resource over overlapping time intervals 3.

Variable/Value Ordering Heuristics: The de-
fault variable/value ordering heuristics used by the
search procedure are the Operation Resource Reliance
(ORR) variable ordering heuristic and Filtered Sur-
vivable Schedules value ordering heuristic described in
[20]. The ORR variable ordering heuristic aims at re-
ducing backtracking by first scheduling difficult opera-
tions, namely operations whose resource requirements
are expected to conflict with the resource requirements
of other operations. The FSS value ordering heuris-
tic is a least constraining value ordering heuristic. It
attempts to further reduce backtracking by assigning
reservations that are expected to be compatible with
a large number of schedules.

These default consistency enforcing schemes and vari-
able/value ordering heuristics have been reported to
outperform several other schemes described in the
literature, both generic CSP heuristics and special-
ized heuristics designed for similar scheduling prob-
lems [20, 19]. These are efficient schemes that seem to
provide a good compromise between the efforts spent
enforcing consistency, ordering variables, or ranking
assignments for a variable and the actual savings ob-
tained in search time. Nevertheless, because the job
shop CSP is an NP-complete problem, these proce-
dures are not sufficient to guarantee backtrack-free
search.

The remainder of this paper describes new backtrack-
ing schemes that help the system recover from dead-
end states. It will be seen that, when the default
consistency enforcing scheme and/or variable order-
ing scheme are not sufficient to stay clear of deadends,
look-back mechanisms can be devised that will modify
these schemes so as to avoid repeating past mistakes
(i.e.80 as to avoid reaching similar deadend states).

#See [20] for further details.

4 Dynamic Consistency Enforcement

(DCE)

Backtracking is generally an indication that the
default consistency enforcing scheme and/or vari-
able/value ordering heuristics used by the search pro-
cedure are insufficient to deal with the subproblems
at hand. For this reason, when it reaches a deadend,
the system will generally start thrashing if it keeps on
using the same default mechanisms®. Theoretically,
thrashing could be eliminated by enforcing full consis-
tency in each search state. Clearly such an approach is
prohibitively expensive. Instead, if one could heuristi-
cally identify small subproblems that are likely to be at
the source of the conflict and just check for consistency
among the variables in these subproblems, thrashing
could often be eliminated at a lower computational
cost. This is the approach described in this section. A
backtracking scheme called Dynamic Consistency En-
forcement (DCE) is presented that dynamically iden-
tifies small critical resource subproblems expected to
be at the source of the current deadend. Experimen-
tal results reported in Section 7 suggest that, by selec-
tively checking for consistency with respect to capacity
constraints among the operations in these small sub-
problems, this scheme is often able to quickly recover
from deadends.

When a deadend is detected, DCE checks for consis-
tency with respect to capacity constraints in critical
resource subproblems, in order to approximate the full
extent of the current deadend and decide how far to
backtrack. The critical subproblems used by DCE con-
sist of groups of operations participating in the current
conflict along with groups of critical operations identi-
fied at an earlier stage. Below, we refer to the group(s)
of operations participating in the current conflict, as
the Partial Conflicting Set of operations (PCS): these
are the operations identified by the default consistency
enforcing mechanism as having no possible reserva-
tions left in the current search state. The objective of
the backtracking scheme 1s to identify the most recent
assignment(s), which, if undone, will produce a con-
sistent search state, 1.e. a search state in which opera-
tions in PCS have reservations that do not seem to con-
flict with earlier assignments. To this end, DCE checks
for consistency with respect to capacity constraints be-
tween operations in PCS and critical operations in a
so-called Dangerous Group (DG) of operations identi-
fied earlier. At each level (while backtracking), the set
consisting of the union of the PCS, the DG and the set
of undone operations up to that level is referred to as
the Deadend Operation Set (DOS). While backrtack-
ing, DCE performs full consistency checking with re-

*Experiments reported in [20, 19] consistency displayed
a dual behavior: the vast majority of the scheduling
problems were either solved without backtracking whatso-
ever, or required an exponential amount of chronological
backtracking.

spect to capacity constraints among operations in the
DOS. Generally, because the DOS may contain oper-
ations requiring different resources, the backtracking
scheme checks for consistency with respect to capacity
constraints in several resource subproblems . During
backtracking the PCS and the DG remain the same
and the DOS varies as more undone operations are
unioned. At the end of a backtracking episode, DOS
has maximum size, call it DOS 4. Assuming that
the procedure was able to backtrack to a consistent
search state 6, DOS,, 4, contains all the operations at
the origin of the deadend (and often more). DOSy, 44
is then saved for later use in a data structure referred
to as the Former Dangerous Groups (FDG). Details
regarding the management of this data structure are
provided in subsection 4.1. If a related backtracking
episode is later encountered by the system, DOS 40
can then be retrieved and serve as the DG for this new
episode . If a subsequent backtracking episode is un-
related to any of the previous ones, then the DG for
this episode is empty.

The behavior of the DCE procedure is illustrated in
Figure 1. Each node represents a search state, la-
beled by the operation that was last scheduled to
reach that state, the resource allocated to that op-
eration, and the operation’s start time. In this ex-
ample, search is assumed to have reached a deadend
at depth Ds. Operations in the PCS are those op-
erations whose domains of possible start times were
identified as empty at depth Dy due to capacity con-
straint violations. The resources associated with op-
erations in the PCS are called the critical resources.
Although a PCS can in general contain operations as-
sociated with more than one critical resources, it is
often the case that the operations in PCS require the
same resource (i.e., the deadend happened as a result
of capacity constraint violations on a single resource).
Upon encountering a deadend at D5, DCE backtracks
to Dy and performs full consistency checking with re-
spect to capacity constraints on the set of operations
DOSy = PCS U DG U O, If there are still capac-
ity constraint violations at D,, operation O; is un-
done, and full consistency checking is performed on
the new DOS, namely DOS; = PCS U DG U Oy, O,y

The procedure 1s repeated until a consistent DOS is

®Because full consistency checking is expensive, if this
set 1s too large, two approaches can be taken to limit com-
putational cost: (1) full consistency checking can be per-
formed only for a subset of the DOS, or (2) k-consistency
[10] can be performed, where k is some predetermined
number.

SClearly, there is no gnarantee that the search state in
which DCE stops backtracking is a consistent search state.
Experimental results suggest however that this is often the
case.

"Two backtracking episodes are defined to be related if
they are due to capacity constraint violations on the same
resource and over close time intervals. Otherwise, they are
unrelated.

found (DOSpey = DOS; in this example). At this
point, the DOS,, 4. 18 saved to be used in the DG for
the next related backtracking episode.

4.1 Management of Dangerous Groups

The purpose of the Former Dangerous Groups of oper-
ations (FDG) maintained by the system is to help de-
termine more efficiently and more precisely the scope
of each deadend by focusing on critical resource sub-
problems. Each group of operations in the FDG con-
sists of operations that are in high contention for the
allocation of a same resource. Accordingly, whenever,
a conflict is detected that involves some of the opera-
tions in one group, the backtracking procedure checks
for consistency among all operations in that group.

The groups of operations in the FDG are built from
the Deadend Operation Sets (DOS) obtained at the
end of previous backtracking episodes (DO Spqz). In-
deed, whenever a backtracking episode is completed,
DOSpar 18 expected to contain all the conflicting
operations at the origin of this episode. Generally,
DOS,, 4 may involve one or several resource subprob-
lems (i.e. groups of operations requiring the same re-
source). Each one of these subproblems is merged with
related subproblems currently stored in the FDG. If
there is no related group in FDG, the new group is
separately added to the data structure.

As operations are scheduled, they are removed from

the FDG.

4.2 Additional “Watch Dog” Consistency
Checks

Because groups of operations in the FDG are likely
deadend candidates, our system further performs sim-
ple “watch dog” consistency checks on these dynamic
groups of operations. More specifically, for each group
G of operations in FDG, the system performs a rough
consistency check to see if the resource can still accom-
modate all the operations in the group. This is done
using redundant constraints of the form: Maz(Ist! +
dul, Ol € G)— Min(estl, 0! € G) > ZOﬁeG dul where
est! and Ist! are respectively the earliest and latest
possible start times of O! in the current search state.

Whenever such a constraint is violated, an inconsis-
tency has been detected. Though very simple and in-
expensive, these checks enable to catch inconsistencies
involving large groups of operations that would not be
immediately detected by the default consistency mech-
anisms 8. Clearly, some inconsistencies can still escape
these rough checks.

8Notice that, when a “watch dog” check fails, PCS is
empty.

- PCS UDGU {On O, O O} = DOS = DOS

--- PCS UDGU {Qn, O, &} = DOS,

--- PCS UDG U {Q, Q} = DOS,

--- PCS U DG U {Q,} = DO§,

QQLt GE QE Gy

Figure 1: The DCE Backtracking Scheme.

5 Learning From Failures (LFF)

Encounter of a deadend is also often an indication
that the default variable ordering was not adequate
for dealing with the subproblem at hand. Typically
the operations participating in the deadend turn out
to be more difficult than the operations selected by
the default variable ordering heuristic. It is therefore
a good idea to first schedule the operations partici-
pating in the conflict that was just resolved. Learn-
ing From Failure (LFF) is an adaptive procedure that
overrides the default variable ordering in the presence
of conflicts.

After recovering from a deadend (i.e. after backtrack-
ing all the way to an apparently consistent search
state), LFF uses the Partial Conflicting Set (PCS) of
the deadend to reorganize the ordering in which op-
erations will be rescheduled and make sure that op-
erations in the PCS are scheduled first. This is done
using a quasi-stack on which operations in the PCS are
pushed in descending order of domain size (operations
with more available start times go first)®. This orders
operations in terms of their criticality (most critical
operation on top) so as to ensure that, as S is popped,
the most critical operations will be scheduled first. As
long as S is non-empty, operations from S are popped
and successively scheduled, thus overriding the default
variable ordering.

6 A Backjumping Heuristic

Traditional

backtrack search procedures only undo decisions that
have been proven to be wrong/inconsistent. Proving
that an assignment is inconsistent with others can be
very expensive, especially when dealing with large con-
flicts. Graph-based backjumping and N-th order shal-
low/deep learning attempt to reduce the complexity of

°If a candidate operation is already on S, i.e. it is en-
countered for a second time, it is pushed again as though
it had a smaller domain.

fullblown dependency-directed backtracking by either
simplifying the process of identifying inconsistent de-
cisions (e.g. based on the topology of the constraint
graph) or restricting the size of the conflicts that can
be detected. The Dynamic Consistency Enforcement
(DCE) procedure described in Section 6 also aims at
reducing the complexity of identifying the source of
a conflict by dynamically focusing its effort on small
critical subproblems. None of these techniques can be
expected to perform well when dealing with large com-
plex 19 conflicts, either because they are too expensive
to run or because they deliberately overlook large con-
flicts. Large complex conflicts can force the search
procedure to thrash, even when using procedures such
as DCE. In these situations, it may be worth undo-
ing decisions that are not provably wrong but simply
appear overly restrictive. Clearly, the resulting search
procedure is no longer complete and may fail to find
solutions to feasible problems.

Texture measures such as the ones described in [9]
could be used to estimate the tightness of different
search states, for instance, by estimating the number
of global solutions compatible with each search state
11 Assignments leading to much tighter search states
would be prime candidates to be undone. The Back-
Jumping Heuristic (BH) used in this study is simpler
and, yet, often seems to get the job done. Whenever
the system starts thrashing, this heuristic backjumps
all the way to the first search state and simply tries
the next best value (i.e. reservation) for the critical op-
eration in that state (i.e. the first operation selected
by the variable ordering heuristic). BH considers that
the search procedure is thrashing when more than 6
assignments had to be undone since the procedure be-
gan or since the last time the system was thrashing,

19T here are conflicts involving large numbers of variables
that are easy to catch, as illustrated by the watch dog
checks described in Section 4.

1A gearch state whose partial solution is compatible
with a large number of global solutions is a loosely con-
strained search state, whereas one compatible with a small
number of global solutions is tightly constrained.

where # is a parameter of the search procedure.

7 Experimental Results

Two sets of 40 scheduling problems each were gen-
erated that differed in the number of major bottle-
necks (one and two major bottlenecks respectively).
Fach problem had 50 operations and 5 resources (i.e.,
10 jobs). All jobs were released at the same time
and had to be completed by the same due date. In
each problem, the common due date was set so that
all operations had to be scheduled within a rather
tight estimate of the problem makespan (see [20] for
details). These are the conditions in which the de-
fault variable/value ordering and consistency enforc-
ing schemes work least effectively (see study reported
in [20]). Among these 80 problems, we only report
performance on problems in which the default schemes
were not sufficient to guarantee backtrack-free search
12 This leaves 16 scheduling problems with one bot-
tleneck, and 15 with two bottlenecks.

We successively report the results of two studies. The
first study compares the performance of three com-
plete backtrack schemes: chronological backtracking,
2d-order deep learning, and the procedure combining
the DCE and LFF backtrack schemes described in Sec-
tion 4 and 5. The second study compares a complete
search procedure using the DCE and LFF schemes
with an incomplete search procedure combining DCE
and LFF with the Backjumping Heuristic (BH) de-
scribed in Section 6.

7.1 Comparison of Complete Search
Procedures

The two intelligent backtracking techniques, DCE and
LFF are complementary and were used in combina-
tion, denoted by DCE & LFF, for experimentation to
assess performance™. Each of the problems in the
experiment set was run using chronological backtrack-
ing, 2d-order deep learning [6] and the DCE & LFF
procedures advocated in Section 4 and 5. The results
reported here were obtained using a search limit of
500 nodes and a time limit of 1800 seconds (except for
deep learning, for which the time limit was increased
to 36,000 seconds '%). All CPU times reported below
were obtained on a DECstation 5000 running Knowl-

12Clearly, performance in the absence of backtracking is
uninteresting, since our backtracking schemes would never
be invoked, i.e. CPU time remains unchanged.

13Begides the experiments reported below, additional ex-
periments were performed to assess the benefits of using
DCE and LFF separately. These experiments show that
both techniques contribute to the improvements reported
in this section.

This was motivated by the fact that our implementa-
tion of deep learning may not be optimal.

edge Craft on top of Allegro Common Lisp '°.

Results for the one-bottleneck problems are reported
in Table 1. Chronological backtracking solved only 4
problems out of 16. Interestingly enough, deep learn-
ing showed no improvement over chronological back-
tracking either in the number of problems solved or
in CPU time. As a matter of fact, deep learning was
even too slow to find solutions to some of the prob-
lems solved by chronological backtracking. This is at-
tributed to the fact that the constraints in job shop
scheduling are more tightly interacting than those in
the zebra problem, where the improvement of deep
learning over naive backtracking was originally ascer-
tained. On the other hand, DCE & LFF solved 10
problems out of 16 (2 out of these 10 problems were
successfully proven infeasible). As expected, by focus-
ing on a small number of critical subproblems, DCE
& LFF is able to discover larger more useful conflicts
than 2d-order deep learning, while requiring only a
fraction of the time required by deep learning. Another
observation is that DCE & LFF expanded fewer search
states than chronological backtracking for the prob-
lems that chronological backtracking solved. However,
each of the DCE & LFF expansions took slightly more
CPU time, due to the higher level of consistency en-
forcement.

Results for the set of two-bottleneck problems are
reported in Table 2. Similar results are observed
here again: deep learning shows no improvement
over chronological backtracking and seems signifi-
cantly slower. The difference between chronological
backtracking and DCE&LFF is not as impressive as
in the first set of experiments. This is probably be-
cause both bottlenecks may have capacity conflicts at
the same time. DCE & LFF may then have problems
determining which one to consider first. As can be
seen from Table 2, chronological backtracking solved 7
out of 15 problems, whereas DCE & LFF solved 8 out
of 15. On the problems solved by both chronological
backtracking and DCE & LFF, DCE & LFF turned
out to be slightly faster overall.

7.2 Complete vs. Incomplete Search
Procedures

Table 3 and 4 compare the performance of the com-
plete search procedure using DCE & LFF against that
of an incomplete search procedure using DCE & LFF
in combination with the Backjumping Heuristic (BH)
described in Section 6. While DCE & LFF was able
to solve only 10 out of 16 one-bottleneck problems and
8 out 15 two-bottleneck problems, DCE & LFF com-
bined with BH solved 14 one-bottleneck problems and
13 two-bottleneck problems. The only one-bottleneck

!5 Comparison between C programs and Knowledge Craft
programs suggests that the code would run 10 to 20 times
faster in C.

Table 1: Results of One-bottleneck Experiments.

%p ggg??ggg: ﬁgl DCE & LFF Deep Learning
No. of CPU |[Result|No. of | CPU [Result|No. of | CPU [Result
Nodes (sec) Nodes | (sec) Nodes| (sec
1 500 1427 F 122 1232 S* 500 5756 F
2 500 1587 F 500 1272 F 500 5834 F
3 74 148 S 63 117 S 25 |36000| F
4 69 152 S 52 120 S 69 391| S
5 500 1407 F 65 134 S 500 11762 F
6 500 1469 F 500 1486 | F 500 8789| F
7 500 1555 F 59 130 S 500 9681 F
8 500 1705 F 41 145 S* 500 9560 F
9 53 108 S 53 102 S 53 122 S
10 500 1529 F 500 1536 | F 500 9114| F
11 500 1460 F 85 1800 F 500 14611 F
12 500 1694 F 500 1131 | F 500 (21283 F
13 51 109 S 51 81 S 51 88 S
14 500 1762 F 63 138 S 500 (18934 F
15 500 1798 F 69 142 S 500 9600| F
16 500 1584 F 500 1183| F 65 |36000| F
S: Solved ; F. Failure; S*: Proved infeasible
Time Limt: 1800 sec (Except Deep Learning)
Node Limt: 500
Table 2: Results of Two-bottleneck Experiments
EXp- %EE??LSE: ﬁg' DCE & LFF Deep Lear ni ng
No. of CPU Resul t [No. of |CPU Resul t [No. of |CPU Resul t
Nodes (sec) Nodes | (sec) Nodes [(sec)
1 500 1139 F 113 1800 | F 18 36000| F
2 500 1444 F 425 1800 F 115 36000 F
3 84 175 S 109 202 | S 84 811| S
4 56 123 S 56 112 S 56 213 S
5 51 101 S 51 113 S 13 36000 F
6 500 1531 F 321 1800 | F 328 |36000(F
7 500 1775 F 500 1357 F 500 2793 F
8 52 102 S 52 115 S 33 36000 F
9 500 1634 F 247 974 S 500 1519 F
10 500 1676 F 91 1800 | F 26 |36000(F
11 66 163 S 59 104 | S 66 2240| S
12 56 139 S 58 104 S 58 281 S
13 54 129 S 52 91| S 54 128900 S
14 500 1676 F 346 1800 | F 500 9031| F
15 500 1522 F 324 1800 F 296 36000 F
S: Solved ; F: Failure; S*: Proved infeasible
Tinme Limt 1800 sec. (36000 sec. for Deep Learning)
Node Limit 500

problems that were not solved by DCE & LFF & BH
are the two infeasible problems identified by the com-
plete search procedure DCE & LFF. This is hardly a
surprise. While the addition of BH to DCE & LFF
enables the search procedure to solve a larger number
of problems, 1t also makes the procedure incomplete
(i.e. infeasible problems can no longer be identified).
Additional experiments combining BH with a simple
chronological backtracking scheme also indicate that
both DCE & LFF and BH contribute to the good
performance of DCE & LFF & BH. Results on two-
bottleneck problems (See Table 4) suggest that the
impact of the backjumping heuristic is particularly ef-
fective on these problems. This is attributed to the
fact that two-bottleneck problems give rise to more
complex conflicts. Identifying the assignments partic-
ipating in these more complex conflicts may simply
be too difficult for any exact backtracking scheme to
work. Instead, because it can undo assignments that

are not provably wrong but simply appear overly re-
strictive, BH seems more effective at dealing with these
more complex conflicts.

8 Concluding Remarks

We have presented three intelligent backtracking
schemes for the job shop scheduling CSP:

1. Dynamic Consistency FEnforcement (DCE), a
dependency-directed scheme, that dynamically fo-
cuses its effort on small critical subproblems,

Learning From Failure (LFF), which modifies the
order in which variables are instantiated based on
earlier conflicts, and

a Backjumping Heuristic which, when thrashing
occurs, can undo assignments that are not prov-
ably inconsistent but appear overly restrictive.

Table 3: Results of One-bottleneck Experiments.

%p' DCE & LFF DCE & LFF & BH
No. of CPU |Result | No. of| CPU | Result
Nodes (sec) Nodes | (sec)
1 122 1232 S* 350 1800 F
2 500 1272 F 203 1124 S
3 63 117 S 63 123 S
4 52 120 S 52 116 S
5 65 134 S 65 144 S
6 500 1486 F 127 424 S
7 59 130 S 59 125 S
8 41 145 S* 457 1800 F
9 53 108 S 53 100 S
10 500 1536 F 67 170 S
11 85 1800 F 74 170 S
12 500 1131 F 164 616 S
13 51 81 S 51 92 S
14 63 138 S 63 149 S
15 69 142 S 69 158 S
16 500 1183 F 156 524 S
S: Solved ; F: Failure; S*: Proved infeasible
Tinme Limt: 1800 sec. Node Limt: 500

Table 4: Results of Two-bottleneck Experiments

%p' DCE & LFF DCE & LFF & BH
No. of CPU |Result | No. of| CPU | Result
Nodes (sec) Nodes [(sec)
1 113 1800 F 151 456 S
2 425 1800 F 371 1780 S
3 109 202 S 95 210 S
4 56 112 S 56 108 S
5 51 113 S 51 97 S
6 321 1800 F 420 1800 F
7 500 1357 F 159 534 S
8 52 115 S 52 96 S
9 247 974 S 423 1705 S
10 91 1800 F 440 1800 F
11 59 104 S 59 113 S
12 58 104 S 58 112 S
13 52 91 S 52 102 S
14 346 1800 F 239 512 S
15 324 1800 F 73 195 S
S: Solved ; F: Failure; S*: Proved infeasible

Time Limt: 1800 sec. Node Limt: 500

The significance of this research is twofold:

1.

Job shop scheduling problems with non-relaxable
time windows have multiple applications, includ-
ing both manufacturing and space-related appli-
cations. We have shown that our schemes com-
bined with powerful techniques that we had pre-
viously developed (1) further reduce the average
complexity of backtrack search, and (2) enable
our system to efficiently solve problems that could
not be solved otherwise due to excessive com-
putational cost. While the results reported in
this study were obtained on problems that re-
quire finding a feasible schedule, the backtracking
schemes presented in this paper can also be used
on optimization versions of the scheduling prob-
lem.

. This research also points to the deficiencies of

dependency-directed backtracking schemes advo-
cated earlier in the literature. In particular, com-
parison with N-th order deep learning indicates
that this technique failed (in our set of experi-
ments) to improve performance when applied to
job shop scheduling problems. This is because
N-th order deep learning uses constraint size as
the only criterion to decide whether or not to
record earlier failures. When deep learning lim-
its 1tself to small-size conflicts, it fails to record
some important constraints; when it considers
conflicts of larger size, its computational complex-
ity becomes prohibitive. Traditional backtracking
schemes never undo assignments unless they can
prove that they are at the source of the conflict.
When dealing with large complex conflicts, prov-
ing that a particular assignment should be un-
done can be very expensive. Instead, our experi-
ments suggest that, when thrashing cannot easily
be avoided, it is often a better idea to use back-
jumping heuristics that undo decisions simply be-
cause they appear overly restrictive. When using
such heuristics, search completeness can no longer
be guaranteed.

Acknowledgements

This research was supported, in part, by the Defense
Advanced Research Projects Agency under contract
F30602-91-C-0016 and, in part, by the Robotics Insti-

tute at Carnegie Mellon University.

References

(1]

C. Badie, G. Bel, E. Bensana, and G. Verfaillie.
Operations research and artificial intelligence co-
operation to solve scheduling problems. In First
International Conference on Expert Planning Sys-

tems, 1990.

J.R. Bitner and E.M. Reingold. Backtrack pro-
gramming techniques. Communicalions of the

ACM, 18(11):651-655, 1975.

Peter Burke and Patrick Prosser. A distributed
asynchronous system for predictive and reactive
scheduling. Technical Report AISL-42, Depart-
ment of Computer Science, University of Strath-
clyde, 26 Richmond Street, Glasgow, GI IXH,
United Kingdom, October 1989.

Rina Dechter. Learning while searching in con-
straint satisfaction problems. In Proceedings of
the Sizth National Conference on Artificial Intel-
ligence, pages 178-183, 1986.

Rina Dechter. FEnhancement schemes for con-
straint processing: Backjumping, learning, and
cutset decomposition. Artificial Intelligence,

41:273-312, 1989.

[6]

[14]

[15]

[16]

[17]

Rina Dechter, Itay Meiri, and Judea Pearl. Tem-
poral constraint networks. In Proceedings of the
First International Conference on Principles of
Knowledge Representation and Reasoning, 1989.

Rina Dechter and Judea Pearl. Network-based
heuristics for constraint satisfaction problems.

Artificial Intelligence, 34(1):1-38, 1988.

John Doyle. A truth maintenance system. Artifi-
cial Intelligence, 12(3):231-272, 1979.

Mark S. Fox, Norman Sadeh, and Can Baykan.
Constrained heuristic search. In Proceedings of
the Eleventh International Joint Conference on

Artificial Intelligence, pages 309-315, 1989.

E.C. Freuder. A sufficient condition for backtrack-
free search. Journal of the ACM, 29(1):24-32,
1982.

M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman and Co., 1979.

John Gaschnig. Performance measurement and
analysis of certain search algorithms. Techni-
cal Report CMU-CS-79-124, Computer Science
Department, Carnegie Mellon University, Pitts-
burgh, PA 15213, 1979.

Solomon W. Golomb and Leonard D. Baumert.
Backtrack programming. Journal of the Associ-
ation for Computing Machinery, 12(4):516-524,
1965.

Robert M. Haralick and Gordon L. Elliott.
Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence,
14(3):263-313, 1980.

A K. Mackworth and E.C. Freuder. The complex-
ity of some polynomial network consistency algo-
rithms for constraint satisfaction problems. Arti-

ficial Intelligence, 25(1):65-74, 1985.

Jr. Paul W. Purdom. Search rearrangement back-
tracking and polynomial average time. Artificial

Intelligence, 21:117-133, 1983.

N. Sadeh and M.S. Fox. Preference propagation
in temporal/capacity constraint graphs. Techni-
cal Report CMU-CS-88-193, Computer Science
Department, Carnegie Mellon University, Pitts-
burgh, PA 15213, 1988. Also appears as Robotics
Institute technical report CMU-RI-TR-89-2.

N. Sadeh and M.S. Fox. Focus of attention in
an activity-based scheduler. In Proceedings of the

NASA Conference on Space Telerobotics, January
1989.

N. Sadeh and M.S. Fox. Variable and value or-
dering heuristics for hard constraint satisfaction
problems: an application to job shop schedul-
ing. Technical Report CMU-RI-TR-91-23, The
Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, 1992.

[20]

[21]

Norman Sadeh. Look-ahead Techniques for Micro-
opportunistic Job Shop Scheduling. PhD the-
sis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, March 1991.

Norman Sadeh and Mark S. Fox. Variable and
value ordering heuristics for activity-based job-
shop scheduling. In Proceedings of the Fourth
International Conference on Ezpert Systems in
Production and Operations Management, Hilton

Head Island, S.C., pages 134-144, 1990.

R. Stallman and G. Sussman. Forward reasoning
and dependency-directed backtracking in a sysem
for computer-aided circuit analysis. Artificial In-

telligence, 9:135-196, 1977.

K. Sycara, S. Roth, N. Sadeh, and M. Fox.
Distributed constrained heuristic search. IEEE
Transactions on System, Man and Cybernetics,

21(6), 1991.
R.J. Walker. An FEnumerative Technique for
a Class of Combinatorial Problems, volume 10,

chapter 7, pages 91-94. American Mathematical
Society, Rhode Island, 1960.

