
How (not) to Choose Mediators for Distributed Constraint
Satisfaction

Michael Benisch and Norman Sadeh
Carnegie Mellon University

School of Computer Science
5000 Forbes Ave. Pittsburgh, PA 15213

{mbenisch, sadeh}@cs.cmu.edu

ABSTRACT
Many successful algorithms, such as Asynchronous Partial Overlay
(APO), have recently been developed for cooperative distributed
problem solving based on the notion of coordinated mediation. In
this paper we examine the impact of different strategies for choos-
ing mediators with respect to the complexity of distributed problem
solving and the difficulty in merging decentralized solutions. We
present experimental results which challenge previously held be-
liefs suggesting that the appointment of highly constrained agents
leads to a decrease in problem solving complexity. We show that,
instead, choosing loosely constrained agents as mediators in order
to minimize the expected size of mediation sessions can lead to an
overall improvement in system performance.

1. INTRODUCTION
Distributed constraint satisfaction continues to serve as a valu-

able paradigm for studying cooperative problem solving techniques
in domains such as resource allocation [2], and distributed time-
tabling and transportation routing [10]. Perhaps more importantly,
DCSPs have helped researchers understand some of the deeper is-
sues surrounding cooperative problem solving and reasoning [14,
3], such as trade offs between the effectiveness of cooperation and
the drawbacks due to the resulting communication. There have
been significant efforts dedicated to designing and testing various
algorithms and protocols for addressing problems in this domain
such as Asynchronous Backtracking (ABT) [13], Asynchronous
Weak-Commitment (AWC) [12], and most recently Asynchronous
Partial Overlay (APO) [6].

For the most part, much of the problem solving effort in these
algorithms involves mitigating the effects of local decisions made
by individual agents that destabilize the system. This process usu-
ally requires a significant amount of inter-agent communication,
because agents must inform each other of conflicting intentions
and cooperate to rectify them. The most effective algorithms, such
as APO, have adopted the notion of cooperative mediation and
manage to cut down significantly on unnecessary communication.
Mediation-based algorithms involve the coordination of parts of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

problem by mediator agents, who are charged with the responsibil-
ity of solving some centralized problem and supplying information
to other agents that rectifies some or all of their conflicts. In this pa-
per we explore the impact of different strategies for choosing medi-
ators, and discuss the relationship between these strategies and the
overall complexity of the distributed problem solving process. As
of yet this kind of analysis has not been discussed, and we find that
it provides valuable insight into the nature of cooperation.

Our analysis focuses on the Distributed Constraint Satisfaction
Problem (DCSP) and helps to clarify the relationship between the
computational properties of solving a centralized version of the
problem, the difficulties in merging or overlaying mediated solu-
tions, and the potential arising from the parallel and distributed
nature of the problem domain. In Section 4 we describe the ex-
perimental results of applying our analysis to the APO algorithm
by examining three different mediator selection strategies on dis-
tributed 3-color graph coloring problems. Our results suggest that
on solvable 3-color graph coloring problems mediators should be
selected in order to minimize the number of agents involved in each
mediation, which is contrary to the previously suggested strategies
of choosing mediators to centralize as much of the problem as pos-
sible.

2. BACKGROUND

2.1 Distributed Constraint Satisfaction
The distributed constraint satisfaction problem was first discussed

by Yokoo et.al. as a way of formalizing Cooperative Distributed
Problem Solving (CDPS) [13], building on previous exploration
into the realm of specific distributed constraint satisfaction prob-
lems [11, 4, 9]. A DCSP is formally defined as a constraint satis-
faction problem (CSP) of the following form:

• a set of n variables, V = {x1, . . . , xn}

• a set of discrete finite domains for each variable, D = {D1, . . . , Dn}

• a set of constraints R = {R1, . . . , Rm} where each Ri(di1, . . . , dij)
is a predicate on the Cartesian product of the domains of all
the variables referenced by that constraint. The constraint
is said to be satisfied if the assignments of each referenced
variable satisfy the constraint.

Where each agent is said to know about a particular set of variables
and constraints. The goal of each agent is to assign a value to its
variables that satisfies all of its known constraints, in an effort to
satisfy the entire problem. For the rest of this paper, for the sake
of simplicity, we will restrict our problem domain to associate each



agent with a single variable, and its known constraints to be all of
the constraints that refer to that variable. We will also consider only
binary constraints (constraints between two variables), although
the ideas presented can be generalized to relax both of these re-
strictions. It is also useful to note that CSPs are often viewed as
graphs or networks where vertices represent individual variables,
and edges represent constraints between two or more (in the case
of hyper-edges) variables. In the distributed domain the constraint
graph also typically represents a communication network between
agents, because agents are more likely to communicate with others
connected via constraints.

2.2 Related Work
In their original paper formalizing DCSPs, Yokoo et.al. also de-

scribed a simple extension of a commonly used CSP solving tech-
nique called Asynchronous Backtracking (ABT). This technique
involves a trial-and-error type solution, where agents continually
assign their variables random values and revise them, or backtrack,
when they receive indication from others that they have destabilized
the system.

Soon thereafter several other techniques were ported from the
centralized CSP domain, such as Asynchronous Weak Commit-
ment (AWC) [12]. This algorithm extends ABT by allowing agents
to treat assignments from other agents as weak-commitments, rather
than unchangeable instantiations. When an agent identifies a con-
flict, it can choose to temporarily ignore the offending variable if it
has reason to believe that its value can be easily changed. Agents
decide whether or not offending variables can be easily changed
based on dynamically computed priorities, which reflect the fre-
quency with which the corresponding agent has been involved in
other trial and error sessions.

The most recent, and most successful framework for DCSP algo-
rithms so far is called Asynchronous Partial Overlay (APO) devel-
oped by Roger Mailler and Victor Lesser [6]. APO is based on the
concept of cooperative mediation, where agents that identify con-
flicts in local sub-problems choose a mediator to solve a centralized
version of the sub-CSP that includes the conflict, and then abide by
the decisions of the mediator.

The use of cooperative mediation for distributed problem solv-
ing first appeared in work involving air-traffic control [1], and has
appeared in various other distributed domains such as supply chain
manufacturing [7]. These algorithms have proven mediation to be
an extremely useful technique for coordinating distributed decision
making, however there has been little to no formal discussion of the
effects of different mediator selection strategies.

3. METHODS

3.1 Mediation, Overlay and Complexity
For the purposes of this paper, we will define the terms media-

tion and overlay in the following fashion with respect to DCSPs:

Definition: mediation is the process of solving a centralized ver-
sion of a subproblem in the DCSP to resolve conflicts among two
or more agents (one of which may be the mediator).

Definition: overlay is the process of fitting together partial solu-
tions to a DCSP like puzzle pieces.

The remainder of the analysis in this section describes the relation-
ship between the complexity of a mediation procedure, the medi-
ation process, and the overlay process. In the most basic terms,
the initiation of a mediation session in DCSP solving involves the

following process:

1. A mediator must be appointed either arbitrarily or based on
some strategy implemented by the agents.

2. The mediator must collect any information deemed neces-
sary to aid the mediation process, such as the constraints
placed on other agents involved in the session.

3. The mediator must derive a solution that satisfies identifiable
conflicts.

4. The solution must be relayed and adopted by the other agents
involved in the session, and the solution must be overlayed
with problem solving efforts in the rest of the DCSP.

Notice that if mediation is the only technique available to the agents
for satisfying conflicts and the mediator’s solution does not per-
fectly overlay onto the problem, the final step will require addi-
tional mediation sessions to stabilize the system. Mediation in
DCSP solving is usually initiated when a conflict is identified by
an agent based on currently assigned variable values. The goal of
the session will be to re-assign values to each agent involved that
alleviate the conflict.

The benefits of this process to DCSP solving arise from com-
putational improvements associated with finding a solution to the
centralized version of the sub-problem, and communication im-
provements arising from the lack of negotiation needed since the
mediator’s decisions are adopted immediately by all agents in the
session. The drawbacks of employing mediation based techniques
in DCSP solving result from the wasted efforts of non-mediating
agents during a mediation session, and the difficulty of overlaying
solutions from several different mediation sessions.

Understanding the general form of mediation techniques helps
us formalize their complexity in DCSP solving. Throughout our
analysis we will make the following assumptions:

• For simplicity sake, and to focus on the primarily on the im-
pact of mediation, we assume that agents have no manner of
resolving conflicts other than mediation.

• We will assume that the complexity of the mediation process
dwarfs all other agent processing, such as the computation
required to choose a mediator. This assumption is justified
considering that mediation usually requires performing some
kind of search, which is likely to overshadow the complexity
of other agent tasks.

• For a particular problem instance and a particular mediation
framework we will assume that M provides a finite upper
bound on the number of mediations required to reach a sta-
ble solution, or identify that the problem is infeasible. An
upper bound exists for any complete algorithm such as APO,
as mediation sessions can continually grow in size until the
entire finite sized problem is mediated by a single agent in
the worst case.

• We assume that the function f(x) describes the worst-case
complexity of mediating x agents, such that the computation
involved by the individual mediator is O(f(x)).

Let T (ω) be a function such that the worst-case computational
complexity of the entire mediation system can be described as O(T (ω)),
where ω ∈ Ω defines a vector of size M whose i’th entry is the
number of agents involved in the i’th mediation session, and Ω is
the set of all such possible vectors that lead to a solution with ≤ M



sessions (note that |Ω| ≤ n(M + 1)). Different chains of media-
tion sessions will result in different ω vectors, and any chain which
requires fewer than M sessions will have values of zero for all en-
tries beyond the number of necessary sessions. To clarify, the dif-
ferences between chains can result from the selection of different
mediators, and differences in solutions chosen by each mediator.
Using these definitions and the assumptions above, the function
T (ω) can be defined as the a linear combination of the complexity
of each individual mediation session as follows:

T (ω) =

M
∑

i=1

f(ωi) (1)

The mediation procedure that minimizes computational complex-
ity1 of the system, is the one that produces a vector, ω, which min-
imizes the value of T in Equation 1.

However, determining the number and size of mediation sessions
required for the procedure to lead to a stable state often involves
carrying out the entire problem solving process. Instead it is useful
to use probabilistic analysis and empirical investigation to design
mediation procedures that minimize the expected worst-case com-
plexity of the process.

To that end we can describe the expected worst-case complex-
ity of our mediation system by introducing a probability density
function p(ω), which describes the probability that our mediation
procedure involves the mediation sizes in the chain specified by ω.
Using the probability function, we can describe the expected com-
plexity of our system as O(E[T (ω)]), where E[T (ω)] is equal to
the function τ (p). This function involves summing the complexity
over all possible values of ω ∈ Ω, multiplied by their probability.
We can derive τ as follows:

E [T (ω)] = E

[

M
∑

i=1

f(ωi)

]

τ (p) =
∑

ω∈Ω

(

M
∑

i=1

f(ωi)

)

p(ω) (2)

We can conclude our analysis and reach the desired intuition by
introducing one final set of assumptions.

• Let us assume that the probability function, p(ω), can be es-
timated with a function p′(j), which satisfies Markov and
independence properties; such that the probability of observ-
ing a mediation of size j depends only on the size of j and
not on its previous or future values. This assumption allows
us to reason about and measure the probability of producing
sessions of a particular size, rather than specific chains.

• We will also assume that the function g(p′) relates the prob-
ability distribution over the size of mediation sessions to an
estimate of the number of mediations required to reach a sta-
ble state, or the state beyond which the values of ω would
be zero. This function can also be reasoned about and exper-
imentally measured, and we believe introducing it helps to
make our discussion more insightful.

Using these final assumptions (also recall that n is the number of
agents and variables in the DCSP) we can re-write the expected
worst-case complexity formula as:
1It is worth noting that other goals in mediator selection may be de-
sirable, such as minimizing the amount of communication involved
in reaching a stable state, which require different analysis.

τ (p′) =

n
∑

j=1





g(p′)
∑

i=1

f(j)



 p
′(j)

τ (p′) = g(p′)
n
∑

j=1

f(j)p′(j) (3)

Notice that the function g describes the relationship between dif-
ficulty in overlaying solutions and likely session size, because the
number of mediations required to reach a solution is related to how
many conflicts are created by each session. The function f de-
scribes the relationship between difficulty in finding a mediation
solution and session size. Thus, Equation 3 clearly illustrates the
trade off between mediation procedures which are likely to involve
coordinating large parts of the problem space, and procedures that
are likely to coordinate smaller parts of the problem at the expense
of involving more sessions. In terms of designing mediation pro-
cedures, this model suggests that during the execution of the pro-
cedure, optimal mediator selection strategies should be employed
to adjust the probability distribution, p′, over the size of mediation
sessions and minimize the expected system complexity, τ .

3.2 APO Overview
The APO algorithm provides a basic framework for utilizing me-

diation in DCSPs, which we will employ to explore our theoretical
model of distributed problem complexity. For the details of the
APO algorithm the reader is directed to [6] (for additional details
see [5]). The algorithm can be summarized as follows:

1. Agent i begins by assigning a random value, di ∈ Di, to its
variable, xi.

2. It then calculates its local priority, pi, based on the number
of agents it share constraints with (its degree in the constraint
graph).

3. The agent then communicates information about its local as-
signment, di, to all of its neighbors and when a conflict is
identified by an agent that cannot be rectified by the agent
alone, a mediator is chosen with the highest priority in the
group of agents known be part of the conflict.

4. The agents who are part of the conflict communicate all the
information they know about their local sub-problems, in-
cluding:

• the set of constraints, Ci, that apply to their variable,
• the entire domain of their variable, Di,
• and information about other agents that are known to

be in conflict with each of the values in their domain
(this is referred to as a labeled domain).

5. This information is then used by the mediator to perform a
branch-and-bound search guaranteed to find a feasible so-
lution, if one exists, to the sub-problem pertaining to agents
that are part of the mediation session that minimizes the num-
ber of constraints violated for agents outside of the session
(the mediator determines the number of external violations
using the labeled domains).

6. The mediator’s solution is communicated to each of the agents
involved in the session, and any external agent (not involved
in the elapsed mediation session) who was violated by the
solution is added to the mediator’s neighborhood. Next time
the same agent mediates, the violated agent will be included
in the session.



APO pi = |neighborhood(i)|

Random APO (RAPO) pi = random number ∈ [0, 1]

Inverse APO (IAPO) pi = 1
|neighborhood(i)|

Figure 1: Summary of Mediator Selection Strategies

3.3 Mediator Selection
In order to validate our theoretical model of mediation complex-

ity, we will explore the performance of different mediator selection
strategies within the framework of APO. As described above, me-
diators are selected in APO based on local priorities which are pro-
portional to the number of agents in the mediator’s neighborhood.
To explore different mediator selection strategies we will change
the way these priorities are generated.

Notice that the mediation aspect of the APO algorithm involves a
complete branch-and-bound search of the centralized sub-problem.
The search algorithm is well known to be exponentially complex in
the number of variables on 3-color graph coloring problems. Thus
in Equation 3 the function f is O(2j), which minimizes complex-
ity when sessions are likely to be smaller. However, g will likely be
inversely related to expected mediation size, because larger media-
tions will lead to fewer sessions. This suggests increasing the size
of mediations and potentially mitigates the effects of the branch-
and-bound complexity. An important insight is that because f

is exponential in expected mediation size, if g is inversely sub-
exponential in the expected mediation size, then τ will be mini-
mized when p′ favors smaller mediations.

Furthermore, during mediation, rather than choosing the first dis-
covered feasible solution, mediators continue to search for the so-
lution with the minimum number of external conflicts. This is in-
tended to increase the likelihood that mediated solutions will over-
lay properly with existing solutions, and thus decrease the inverse
complexity of the g function. Because of this fact, and the fact that
on solvable graph coloring instances there will always be a way to
overlay feasible solutions, our model predicts the expected com-
plexity of the system on 3-color graph coloring problems will be
minimized when the expected size of the mediations is smallest.
This prediction is contrary to suggestions and intuitions presented
in the description of the APO framework, which involves choosing
mediators who are most constrained and thus will have the largest
expected mediation sessions.

4. RESULTS

4.1 Distributed 3-color Graph Coloring
The experiments presented in this paper involve solving solvable

instances of a distributed 3-color graph coloring (D3GC) problem
using different mediator selection strategies with the APO algo-
rithm. The D3GC problem is a DCSP where all of the constraints
are not-equal constraints, and the domain of each variable con-
tains 3 different colors. We generate random solvable instances
according to the algorithm presented in [8], which has been used
for benchmarking previous research in this area.

4.2 Experimental Setup
Figure 1 summarizes the different mediation strategies we exam-

ine in our experiments. The different strategies include the strategy
suggested with the APO framework of choosing priorities propor-
tional to an agent’s number of constraints, a random strategy, which

we will refer to as Random APO (RAPO), that assigns priorities
completely randomly, and a strategy that assigns priorities inversely
proportional to an agent’s number of constraints. This last strategy
is intended to minimize the expected mediation size, and will be
referred to as Inverse APO (IAPO).

In our experiments we varied the number of variables in the
problem, n, and the problem density, or number of constraints per
variable, m. We generated 10 random solvable problems for each
combination of n and m, n = 15, 30, 36, 45, 51, 60 and m = 2.0
(low density) and 2.7 (high density). For each of the 10 problems
we generated 10 different random starting assignments which were
shared across all algorithms, for a total of 1200 runs per algorithm.

4.3 Experimental Results
The relationship between the average size of mediation sessions

and number of mediation sessions required for each algorithm is
shown for each of the values of n and m in Figure 2. The run-
ning time results are shown in Figure 3 as percentage improvement
graphs over the APO algorithm of the other two algorithms, with
95% confidence intervals. We are aware that the running time of an
algorithm can be greatly effected by its implementation specifics,
however these algorithms were all implemented in the exact same
framework ensuring that differences were only due to the differ-
ence in mediator selection strategies. We also measured the num-
ber of cycles each algorithm required, and the number of messages
passed between agents. During a cycle all messages are delivered
to agents, they are allowed to process the information contained in
the messages, and all messages emitted during the cycle are placed
on the queue to be handled during the subsequent cycle. Both of
these metrics revealed no significant differences between any of the
algorithms or the results reported for APO in [6].

As expected, the IAPO algorithm has the smallest mediation ses-
sions on average and the APO algorithm has the largest for all val-
ues of n and m. The mediation measurements confirm that there is
an inverse relationship between the average size of the mediations
and the number of sessions required for all algorithms and all val-
ues of n and m, however the relationship appears to be inversely
sub-exponential. This relationship also appears to be more signif-
icant on problems with larger values of n and m, which can be
explained by the increasing difficulty in overlaying solutions. The
running time results confirm, that IAPO is significantly faster for
all values of n and m than the APO algorithm, and appears to scale
more effectively. The RAPO algorithm falls directly in between the
other two algorithms on all reported metrics.

We performed similar experiments on random (not guaranteed
to be solvable) 3-color graph coloring problems and found the re-
sults showed little difference in performance on average between
the different mediator selection strategies. We attribute this to the
fact that infeasible problem instances require larger mediation ses-
sions to identify. In order to identify an infeasible problem the sub-
set of variables which together prevent a feasible solution must be
centralized by a mediator, which is more likely to happen when me-
diation sizes are larger. Thus, improvements on solvable instances
by the IAPO algorithm are balanced by a more rapid recognition of
infeasible problems by the APO algorithm.

5. DISCUSSION
In this paper we presented a theoretical model for understanding

the computational complexity of mediation procedures for solving
DCSPs. Our experimental results validate our theoretical model
by examining different mediator selection strategies on solvable 3-
color graph coloring problems. The results confirmed that the rela-
tionship between the expected size of a mediation session and the



(a) Low Density Problems (m = 2.0)

(b) High Density Problems (m = 2.7)

Figure 2: Mean mediation session size versus mean number
of mediation sessions needed to solve random solvable D3GC
instances.

number of mediation sessions needed to reach a stable state was
inversely sub-exponential on these problems. As our model pre-
dicted, this led to a significant increase in system running time as
average mediation size increased. These results are contrary to pre-
viously reported intuitions about effective ways of selecting media-
tors, and the resulting algorithm outperformed APO, the previously
most successful technique in this domain.

The model presented in this paper formalizes the relationship be-
tween the benefits of mediation for cooperation and the difficulty in
fitting the resulting solutions together in DCSPs. DCSPs have been
shown as formalized instances of cooperative distributed problem
solving, and we believe this generalizes our model to provide in-
sight into the larger domain of mediated cooperative problem solv-
ing.
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(a) Low Density Problems (m = 2.0)

(b) High Density Problems (m = 2.7)

Figure 3: Running time needed to solve random solvable D3GC
instances as mean percentage improvement over APO.
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