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Abstract. Semantic Web technologies offer the prospect of significantly reducing 

the amount of effort required to integrate existing enterprise functionality in sup-

port of new composite processes.– whether within a given organization or across 

multiple ones. A significant body of work in this area has aimed to fully automate 

this process, while assuming that all functionality has already been encapsulated in 

the form of semantic web services with rich and accurate annotations. In this article, 

we argue that this assumption is often unrealistic. Instead, we describe a mixed ini-

tiative framework for semantic web service discovery and composition that aims at 

flexibly interleaving human decision making and automated functionality in envi-

ronments where annotations may be incomplete and even inconsistent. An initial 

version of this framework has been implemented in SAP’s Guided Procedures, a 

key element of SAP’s Enterperise Service Architecture (ESA). 

1. Introduction 

Service Oriented Architectures (SOAs) provide a framework within which enterprises 

expose functionality in the form of loosely coupled services that can be integrated and 

consolidated in response to demand for new applications (or services). Over the past 

several years, languages and frameworks have been proposed to develop and leverage 

rich semantic service annotations in support of both service discovery and composition 

functionality - e.g. [5, 7, 8]. A significant portion of this work has been devoted to sce-

narios aimed at automating service discovery and composition functionality (see surveys 

in [12, 13]) – notable exceptions include the semi-automated web services composition 

approaches reported in [14, 15, 16]. While valuable, this work does not address the chal-

lenges involved in training personnel to efficiently and accurately develop the necessary 

service annotations and ontologies.  Nor does it fully recognize the amount of effort 

involved in annotating legacy applications in use in both small and large organizations. 

What is needed for enterprises to be able to exploit the power of semantic web service 

technologies are tools that can effectively support their personnel from day one with 

significantly incomplete and possibly inconsistent annotations. These tools therefore need 

to be highly interactive in nature. They need to support users through suggestion, com-



pletion and verification functionality, while always allowing them to override their rec-

ommendations. In other words, situations where recommendations are ignored by the 

user are potential indicators of inconsistencies in the underlying model. 

In this article, we present a mixed initiative framework for semantic web service dis-

covery and composition intended for that purpose. Research in mixed initiative planning 

and scheduling has a rich history of its own, starting with the work of Allen and others 

[27, 28]. This also includes our own work on integrating process planning and production 

scheduling and on supporting coordinated supply chain planning and scheduling across 

supply chains [3, 4]. In contrast to this prior work, the tools presented in this paper do not 

assume complete or even consistent ontologies and annotations. Instead they are based on 

the premise that users should retain close control over many decisions while having the 

ability to selectively delegate tedious aspects of their tasks. Automated service discovery 

and composition functionality is merely used to selectively intervene and assist users in 

some of their tasks by providing suggestions, verification, and completing some of the 

user’s decisions. This enables the user to dynamically choose how much of the discovery 

and composition process to delegate and how much of it to retain control over. 

The framework we present has been validated in the context of SAP’s Guided Proce-

dures, a key element of SAP’s Enterprise Service Architecture (ESA) [17] and its Com-

posite Application Framework (CAF) [18]. Specifically, CAF is built into SAP’s Net-

Weaver [19] to support the development of cross-functional applications and business 

processes. Guided Procedures (GP) [20] is the tool developed as part of CAF to enable 

lay users (i.e. users without software development skills) to set up and execute new col-

laborative business processes out of existing functionality and applications.  Target users 

include SAP personnel as well as SAP consultants and “analyst” users responsible for the 

customization, refinement and composition of applications and services at client organi-

zations.  It should be pointed out that the mixed initiative framework presented in this 

paper is not specific to GP and that it could be applied across a broad range of other 

service discovery and composition scenarios. 

The remainder of this paper is organized as follows. Section 2 introduces Guided Pro-

cedures and our mixed initiative framework for semantic service discovery and composi-

tion. Section 3 details our modeling framework, Section 4 discusses the underlying se-

mantic web reasoning and service discovery and composition functionality used in our 

framework. This includes the way in which some of this functionality has been broken 

down in support of our mixed initiative framework. Section 5 revisits the Guided Proce-

dures scenario introduced earlier. Section 6 discusses the framework’s current implemen-

tation and presents an initial set of empirical results. Concluding remarks are provided in 

Section 7. 

2. A Mixed Initiative Framework for Service Discovery and 

Composition 

SAP’s Guided Procedures (GP) allow users to define new composite applications and 

processes by re-using, integrating and orchestrating existing functionality encapsulated in 

the form of composable elements. In GP, composable elements comprise primitive func-



tionality (“callable objects” and “actions” in the GP jargon) as well as composite func-

tionality (or “blocks” in the GP jargon), including complex processes and services.  

Usage scenarios range from assisting SAP consultants as they tailor and combine ex-

isting SAP modules and functionality to capture the processes and policies of a particu-

lar company, to scenarios where analyst users build new composite applications that 

leverage functionality exposed by third party partners in the form of web services.  

The mixed initiative framework for semantic web service discovery and composition 

described in this paper has been implemented as a recent addition to SAP’s Guided Pro-

cedures, though its applicability extends beyond this particular environment.  It enables 

users to annotate composable elements with semantic profiles that refer to concepts in an 

open collection of ontologies.  These annotations are used by mixed initiative functional-

ity to support users at design time as they specify abstract requests for composite appli-

cations, search for, select among, and compose available services to satisfy these requests. 

This functionality is presented to users in the form of simple services that can selectively 

intervene at different points in this often highly iterative process (Fig. 1).  They provide 

suggestions, offer to complete tedious steps and verify decisions made by users, while 

always allowing them to manually override their recommendations and regain control.  

 

Fig. 1. Simplified Workflow – Mixed initiative design-time functionality supports users as they 

refine the specification of composite services, identify and select relevant services and compose 

them. Actual workflows often involve multiple iterations.  

The development of composite services tends to be an iterative process, where users 

successively specify and relax requirements while tailoring and combining existing func-

tionality to satisfy these requirements. The GP framework is intended to accommodate 

different work styles ranging from “top down” approaches, where a user specifies an 

abstract description of a desired composite service to more serendipitous or “bottom-up” 

approaches where users directly edit and compose existing services – and anything in 

between.  Abstract descriptions of composite services will be in the form of constraints 

on desired input and output parameters as well as on the state of affairs both prior to and 



after invoking the composite service. A simple example of such an abstract description 

could read “I want a service that takes a RFQ as input and generates a Quote as output”. 

A more complex description could be of the form “I want a service that takes care of all 

RFQs that have not yet been processed”. 

While relying on semantic annotations to guide mixed initiative service discovery and 

composition, our framework recognizes that GP users cannot be expected to be experts 

in annotating composable functionality. Instead, it is understood that typical users will 

often fail to initially identify (or specify) relevant annotations. Accordingly our frame-

work is designed to operate with partial annotations and help users become better at 

annotating composable functionality over time. As annotations become richer and more 

accurate, the quality of the guidance provided by our framework also improves and users 

gradually learn to take advantage of it. Because mixed initiative functionality is provided 

in an unobtrusive way, it never hinders users.  

Broadly speaking, our framework’s mixed initiative functionality consists of simple, 

often customizable, services capable of providing suggestions and feedback to users as 

they deal with each of the following three sets of key decisions: 

 

1. Semantic Discovery: This functionality enables users to search repositories of com-

posable functionality, based on both functional and non-functional attributes (e.g. [9]) 

– e.g. searching for one or more services that could help build a composite applica-

tion. Functional attributes include input, output parameters as well as preconditions 

and effects. Non-functional attributes refer to other relevant characteristics such as 

accuracy, quality of service, price, owner, access control restrictions, etc.  

2. Semantic Dataflow Consolidation: This functionality assists users by automatically 

suggesting ways of mapping input and output parameters of composable functional-

ity elements as they are being composed. This includes functionality to automatically 

complete an existing step – this is similar to “code completion” functionality except 

that it is based on semantic reasoning. It also includes verification functionality that 

flags seemingly erroneous or inconsistent assignments. 

3. Semantic Control Flow Consolidation: This is similar, except that here were are 

concerned with the order in which services will be executed. This includes reasoning 

about the availability of necessary input variables and, more generally, about the 

preconditions and effects associated with the execution of different services. Again 

this functionality can be provided in the form of suggestions or to help verify the 

correctness of decisions made by users. It can be invoked for an entire process or 

just for two or more steps in a process currently under construction. Suggestions can 

include the introduction or removal of particular sequencing constraints. It may also 

involve identifying and adding one or more additional steps to a partial process. In 

general, users should be able to specify how much they want to delegate at any point 

in time, e.g. whether to request help with a small subproblem or with a more exten-

sive portion of an existing solution. 

 

As users interact with the above functionality, they should always have the flexibility to 

selectively revise and complete existing annotations. Over time, we also envision adding 

global analysis functionality. This would go beyond just verifying the correctness of 

composite applications to include identifying redundancies and inefficiencies in proc-

esses.  



3. Underlying Representation Model  

Below, we briefly review the way in which ontologies and semantic web technologies are 

organized and provide an overview of the underlying service model and annotations used 

in our framework. 

3.1  Ontologies 

An ontology is simply a description of concepts relevant to a given domain along with 

attributes/properties characterizing these concepts. By relying on shared ontologies, 

namely by agreeing on the definition of common concepts, developers within a given 

organization can define composable functionality elements that refer to the concepts in 

these ontologies. So can enterprises as they selectively expose composable functionality 

elements to business partners in the form of (semantic) web services. It is notable that we 

use OWL language to annotate the concepts in describing the components in the GP. 

Although the upper model for the components is very similar to OWL-S, our framework 

is not restricted to OWL-S language. This services can also be described by other seman-

tic web service description languages, like METEOR-S [23], WSDL-S [24] or 

WSMO[21].  

A composable (functionality) element can be either an atomic service (e.g. a GP Call-

able Object, Action, including external services wrapped as such) or a composite service 

(e.g. a GP Block or Process). It is described (or “annotated”) by its Input parameters, 

Output parameters, Preconditions, Effects and Non-functional attributes 

Both preconditions and effects are currently represented using “status” objects. The 

preconditions are currently interpreted as being part of a conjunction, namely all precon-

ditions need to hold before activating the composable element. A composable element 

can have multiple conditional effects, each representing different mutually exclusive 

possible outcomes. In other words, the particular conditional effects that will hold follow-

ing the execution of a composable element will depend on the actual execution of that 

component (e.g. whether a request is approved or rejected or whether execution of a 

service is successful or not).  A conditional effect is itself a collection of actions, each 

either asserting or deleting status objects. Status objects are defined in relation to OWL 

classes. A status class can have several properties. For example, in describing a purchase 

order processing, service a “submitted” class can be used to indicate that a purchase 

order has been submitted. These properties are instantiated at runtime based on bindings 

(defined at design time) to relevant input and output parameters.  

A composite process is described in terms of a process model. The model details both 

its control structure and data flow structure. A process is recursively defined as either a 

“Composable Element” or a “Composite Process”. A “Composite Process” contains one 

or more sub-processes.  Sub-processes are to be executed according to control constructs. 

Examples of control constructs include “sequence”, “choice” and “parallel”. Each proc-

ess has a set of parameters, including “inputs”, “outputs”, “preconditions” and “effects”. 

A “Composite Process” is also described in terms of “Perform” constructs that specify 

how data flows across the process. This is done using a “Consolidation” construct that 

maps input and output parameters of composable elements onto one another (“dataflow 

consolidation”).   



3.2 Annotations: Cost-benefit Tradeoffs 

Legacy GP elements already include input and output parameter descriptions that are 

defined in relation to a small set of possible types (e.g. string, integer, business object). 

Minimally these types can automatically be converted into corresponding ontology ele-

ments. At the same time our framework allows users to optionally refine these descrip-

tions and to map service parameters onto more specific classes. For instance, rather than 

specifying an input parameter as a string, one might define it as an employee_name, 

which itself may be defined as a subclass of string in a domain specific ontology. While 

optional, more detailed descriptions enable more sophisticated reasoning functionality 

thereby leading to more and better support for the user.   

There are however cost-benefit tradeoffs associated with the development of rich on-

tologies and annotations and it would be unrealistic to assume their existence from day 

one. Instead our expectation is that over time users will learn to appreciate the better 

support provided by these annotations and will be more willing and able to invest the 

necessary effort to develop them. Our mixed initiative framework does not assume the 

existence of rich and accurate ontologies and annotations. Clearly in the absence of such 

annotations, the support provided by our framework is not as powerful and may occa-

sionally be itself inaccurate.  It is therefore critical for this support to never hinder the 

user but rather to let the user choose when to invoke it and whether or not to follow its 

recommendations.  As users invoke mixed initiative functionality and identify what ap-

pear to be inaccurate or incomplete annotations, it is critical to enable them to easily 

examine and, if necessary, modify these annotations (subject to proper approval proce-

dures). As annotations become more complete and accurate, we expect GP users to in-

creasingly rely on our mixed initiative support and to make fewer errors as they build 

composite applications and services (e.g. fewer mismatches between input and output 

parameters, fewer step omissions in the construction of composite processes, etc.). This 

in turn should translate into higher quality processes and an overall increase in productiv-

ity.  

4. Overall Architecture & Underlying Reasoning 

4.1 Overall Architecture 

The implementation of our mixed initiative semantic web service discovery and com-

position framework in the context of SAP’s Guided Procedures comprises (Fig. 2): 

1. Enhancements of the GP graphical user interface with access not just to core GP 

functionality (e.g. editing callable objects, actions and blocks) but also to a growing 

collection of mixed initiative service discovery and composition functionality. In-

voking this mixed initiative functionality results in requests being sent to a mixed 

initiative semantic web service discovery and composition reasoner. 

2. Services to (de)register both services and ontologies 

3. The mixed initiative semantic web service and discovery reasoner itself, which is 

implemented as an independent module. As already indicated, while an initial ver-



sion of this module has been integrated in GP, the module itself has been designed so 

that it could play a similar role in other service composition/process development 

environments 

 

Fig. 2. Overall architecture 

This latter module is implemented in the form of a rule-based engine (currently using 

JESS, a high-performance Java-based rule engine [7]). Rules in the engine implement a 

growing collection of mixed initiative service discovery and composition functionality, 

which itself combines two forms of reasoning: 

1. semantic reasoning  (e.g. reasoning about classes and subclasses as well as about 

more complex constructs supported by the OWL language) 

2. service composition planning functionality implementing extensions of the highly 

efficient GraphPlan algorithm [10,11] – itself reimplemented using JESS rules. 

This underlying reasoning functionality is further discussed in Subsections 4.2 and 4.3. 

Facts in the rule-based reasoner are organized in a working context (Fig. 2). They in-

clude: 

− An abstract description of the desired composite service  

− A description of partial or complete service(s) generated to satisfy the user’s request – 

these composite services may also include inconsistencies 

− Profiles describing registered composable elements (or “services”)  

− Facts contained in or inferred from registered ontologies  

− Partial domain results, produced while processing mixed initiative requests. This in-

formation, while dynamic, is maintained as it tends to change only slightly from one 

user request to the next (during the composition of a given service). Housekpeeing 

rules, not depicted in Fig. 2, help remove facts that have been invalidated.  Examples 

of partial results include nodes, edges, levels and “mutex” information derived as part 



of the Graphplan algorithm (see 4.3) or candidate matches for dataflow consolidation 

between two consecutive services. 

− Meta-control data is also maintained in the working context in the form of predicates 

corresponding to different mixed initiative requests. These facts in turn trigger rules 

associated with the corresponding mixed initiative functionality, e.g rules implement-

ing service discovery, parameter consolidation, dataflow verification, etc.  

4.2 Semantic Reasoning 

This functionality enables our module to load OWL ontologies and annotations and 

reason about them. This is done using an OWL-Lite Meta-Model, expressed in CLIPS, 

the modeling language used by JESS. An example of such a meta-model can be found in 

[22]. A translator is used to convert OWL-Lite ontologies into JESS triples. Our current 

implementation is based on Jena's RDF/XML Parser, ARP [25].  

4.3 Service composition planning 

This functionality is implemented using extensions of the GraphPlan algorithm. This 

is an algorithm that combines: 

− reachability analysis to determine whether a given state (e.g. a combination of effects) 

can be reached from another state (e.g. the state reached after invoking an initial set of 

services), and 

− disjunctive refinement, namely the addition of constraints between steps to resolve 

possible inconsistencies 

In this algorithm, services and propositions (i.e. input, output, preconditions and ef-

fects in our model) are organized in layers in a “graphplan” that is iteratively analyzed 

and refined to obtain one or more service composition plans – if such plans exist. The 

graphplan consists of nodes, edges and layers (or levels). Possible inconsistencies are 

represented in the form of “mutex” information. This information in turn can be used to 

support mixed initiative functionality such as recommending possible ways in which to 

sequence services (“control flow”). Clearly, when used in one step, the GraphPlan algo-

rithm can help identify all possible composite services satisfying an abstract description. 

Instead, we use a variation of this algorithm that enables us to find one or more plans at a 

time. This approach allows users to specify how many composite services they want to 

evaluate at a time and is also more practical, given the potentially large computational 

effort involved in identifying all possible composite services compatible with a given 

request. Other examples of mixed initiative functionality supported by this planning algo-

rithm include: 

− Identifying some or all services capable of producing a given effect or a given output 

− Identifying all services that could be invoked following the execution of a given ser-

vice 

− Detecting conflicts between a selected service and other services already selected as 

part of a partial solution and suggesting ways of resolving these conflicts (using mutex 

information) 



− Suggesting modifications to the abstract description of a desired composite service if 

no plan can be can be found for the current description – Note that our approach does 

not require that an abstract description be provided: some users may provide such a 

description and others may not. 

 

Graphplan expansion and the mutex generation are implemented as Jess rules, while plan 

extraction is implemented as a combination of Jess queries and Java functions.   

The following scenarios further illustrate ways in which mixed initiative functionality 

can assist users as they work on developing new composite applications. 

 

Scenario 1: Examples of user-oriented services based on dataflow consolidation 

functionality 

A user has added a new service (or step) to a partial process and now attempts to 

map the new service’s input parameters onto the outputs of services already present in 

the partial process. The following are examples of user-oriented services based on 

dataflow consolidation functionality 

o One such service can be provided to suggest possible mappings 

o A similar service can also help identify input parameters that cannot be mapped, 

which in turn can help the user identify missing steps in the current process (e.g. 

a request for approval has to be submitted in order to generate a particular input 

value such as the employee ID of the person required to authorize the new step). 

o Alternatively, the user might decide to manually map the new service’s input pa-

rameters onto the output parameters of other steps in the partial process. She can 

then invoke dataflow consolidation functionality to verify her choices. An indi-

cation that one of the mappings is inconsistent means either of two things: (a) 

she made a mistake; (b) an annotation is incorrect. In the latter case, the user can 

decide to override the system’s recommendation and, optionally, submit a re-

quest for the conflicting annotation to be corrected – or a more general record 

can be created for future inspection by an annotation specialist. 

 

Scenario 2: Examples of user-oriented services based on service discovery func-

tionality 

The partial process created by a user does not yet satisfy some of the desired ef-

fects (or produce some of the desired outputs) specified in the abstract process de-

scription she has specified. The following are examples of user-oriented services 

based on service discovery functionality that can assist the user: 

o The user can select one or more of the not-yet-satisfied desired effects and re-

quest a list of services capable of producing them 

o Alternatively, she can select a particular step in the current partial process (e.g. 

the last step) and request a list of all services that can potentially be invoked at 

that point 

o More complex versions of the above services could eventually be provided. An 

example would be a service that allows users to request a list of services that 

satisfy additional constraints (e.g. find me a service  that does X from one of the 

company’s  preferred service providers) 

 

 



Scenario 3: Examples of user-oriented services based on mutex information 

The user has just added a new step to the current working process Examples of 

user-oriented services based on mutex information: 

o Mutex information can be used to help the user identify valid places where to 

insert the new step/service into the existing process 

o It can also be used to verify sequencing decisions made by the user 

 

By now, it should be obvious that, by breaking down service discovery and composi-

tion functionality into finer, user-oriented services, it becomes possible to effectively 

support a vast number of possible scenarios, each corresponding to somewhat different 

situations and work styles. It should also be clear that the same functionality (e.g. com-

puting mutex information, or supporting data consolidation) can be repackaged in a num-

ber of different ways. Often the underlying functionality does not even have to be com-

plex. The key is in presenting it to the user at the right time and in a usable, non-obtrusive 

way.  Our approach is to incrementally add more such services, evaluate their usefulness 

and, if necessary, refine the ways in which they are presented to users.  

5. Guided Procedure Scenario Revisited 

 

Fig. 3:  Specifying an abstract composite service profile in relation to concepts in an ontology 

In a typical interaction with the semantically enhanced version of GP, a user will pro-

vide a high level description of a desired composite service. This description can be 

entered using a wizard that allows users to specify desired service profile attributes (e.g. 

input/output parameters, preconditions and effects) in relation to loaded ontologies (e.g. 

see screen shot in Fig. 3). This specification is loaded into the semantic service discovery 

and composition reasoner’s working context, where it will help constrain future mixed 

initiative requests from the user. A simple (and admittedly naive) request might be to 



automatically search for one or more composite services that match the user’s composite 

service description. Other more typical requests are in the form of incremental steps, 

where users iteratively look for composable elements that help satisfy part of the service 

description, refine the control flow and data flow of selected composable elements, and 

possibly revise the original composite service until a satisfactory solution is obtained. 

Fig. 4 displays a typical screen shot, where a user invokes mixed initiative functional-

ity to obtain suggestions on how to consolidate the input and output of two consecutive 

services intended to be part of a composite process referred to as “Purchase Order Sce-

nario”. Here, based on sub-class relationships in a domain ontology, the system recom-

mends consolidating an output parameter called “warehouse address” with the “ship to 

location” input parameter of a subsequent service. 

 

 

Fig. 4: Suggestions on consolidating input and output parameters of two consecutive services 

6. Implementation Details and Evaluation  

Our mixed initiative semantic service discovery and composition reasoner has been 

implemented using Jess. Ontologies are expressed in OWL, while the services are de-

scribed using a slightly modified fragment of OWL-S. An OWL metamodel [22] is 

loaded into Jess as facts. We use Jena to translate OWL documents into triples – also 

represented in Jess facts. Mixed initiative rules based on the GraphPlan algorithm have 

been implemented to support an initial set of mixed initiative functionality, including 

service discovery, dataflow consolidation, control flow and verification functionality.  

The resulting system has been integrated with SAP’s Guided Procedure framework 

and evaluated on an IBM laptop with a 1.80GHz Pentium M CPU and 1.50GB of RAM. 

The laptop was running Windows XP Professional OS, Java SDK 1.4.1 and Jess 6.1.  



Below, we report results obtained using ontologies from the Lehigh University Bench-

mark (LUBM) [26]. The results are based on the university example with around 50000 

triples. Results are reported for repositories of 100, 500 and 1000 randomly generated 

semantic web services. Each randomly generated service had up to 5 inputs and 5 outputs. 

Input and output parameter types were randomly selected from the classes in the domain 

ontology. Performance, measured in the term of CPU times (in milliseconds), has been 

broken down as follows: 

• Service and ontology loading time – this is typically done once when launching the 

system. Registering a single new service is an incremental process that only requires 

a tiny fraction of this time. 

• Semantic reasoning time, which mainly involves completing domain ontologies 

once they have been loaded, is also typically performed just when launching the sys-

tem 

• Request processing: This is the time required to automatically generate composite 

services that match a randomly generated abstract composite service description. 

This time depends on the number of valid composite services one wishes to generate. 

For each service repository size, performance for two such values (number between 

parentheses) is reported. 

As can be seen, the time it takes to produce multiple composite services ranges be-

tween 0.5 and 4 seconds. This seems quite acceptable, especially given that most of the 

time users will submit more incremental, and hence less time consuming, requests.  The 

time it takes to load the system is higher than we would like, though we believe that, with 

some code optimization and possibly more powerful hardware, it will prove to be quite 

acceptable as well. 

 
 CPU time (in milliseconds) 

Nb. Services 

(Nb. Sol.) 

Ontology and 

service loading 

Semantic 

Reasoning 

Request 

Processing 

100 (12) 54468 86475 1041 

100 (211) 52445 89035 3141 

500 (2) 52465 206687 511 

500 (40) 53166 220227 1702 

1000 (3) 54689 477467 1235 

1000(78) 57944 457207 4116 

 

While encouraging, these are only preliminary results and further testing is needed to 

fully evaluate the scalability of our approach. In addition, detailed experimentation with 

actual users will be needed to fine tune the way in which mixed initiative functionality is 

presented and to eventually evaluate the full benefits of our approach from a productivity 

and solution quality standpoint. 

7. Summary and Concluding Remarks 

In this article, we have summarized ongoing work on the development of a mixed initia-

tive semantic web service discovery and composition framework. In contrast to most 



work on semantic web service discovery and composition, our approach does not assume 

the existence of rich and accurate annotations from day one. Instead, it is intended to 

selectively intervene and assist users in some of their tasks by providing suggestions, 

identifying inconsistencies, and completing some of the user's decisions. Users are al-

ways in control and decide when and how much to delegate to supporting functionality. 

The quality and accuracy of the support provided by our framework is intended to im-

prove over time, as users learn to develop richer and more accurate annotations.  

An initial version of this framework has been integrated and evaluated in the context 

of SAP's Guided Procedures, a central element of the company's Enterprise Service Ar-

chitecture. Initial empirical results have confirmed the viability of our underlying reason-

ing framework, which leverages a combination of semantic reasoning functionality and of 

service composition planning functionality based on the GraphPlan algorithm Rather than 

being implemented in a monolithic manner, this functionality has been broken down and 

extended to support an initial collection of user-oriented, mixed initiative services. Over 

time, we plan to further extend and refine this collection of services.  While our initial 

results are promising, we recognize that additional testing (and fine tuning) will be 

needed to fully realize and evaluate the potential of our approach and to measure actual 

improvements in both user productivity and solution quality. 
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