
User-Controllable Learning of Security
and Privacy Policies∗ †

Patrick Gage Kelley, Paul Hankes Drielsma, Norman Sadeh, Lorrie Faith Cranor
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213, USA

{pkelley, paulhd, sadeh, lorrie}@cs.cmu.edu

ABSTRACT
Studies have shown that users have great difficulty specifying
their security and privacy policies in a variety of application
domains. While machine learning techniques have success-
fully been used to refine models of user preferences, such
as in recommender systems, they are generally configured
as “black boxes” that take control over the entire policy and
severely restrict the ways in which the user can manipulate it.

This article presents an alternative approach, referred to as
user-controllable policy learning. It involves the incremental
manipulation of policies in a context where system and user
refine a common policy model. The user regularly provides
feedback on decisions made based on the current policy.
This feedback is used to identify (learn) incremental policy
improvements which are presented as suggestions to the user.
The user, in turn, can review these suggestions and decide
which, if any, to accept. The incremental nature of the
suggestions enhances usability, and because the user and the
system manipulate a common policy representation, the user
retains control and can still make policy modifications by
hand.

Results obtained using a neighborhood search implemen-
tation of this approach are presented in the context of data
derived from the deployment of a friend finder application,
where users can share their locations with others, subject to
privacy policies they refine over time. We present results
showing policy accuracy, which averages 60% upon initial
definition by our users, climbing as high as 90% using our
technique.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
∗This work is supported by NSF Cyber Trust grant CNS-
0627513. Additional support has been provided by
Nokia, France Telecom, the CMU/Microsoft Center for
Computational Thinking, and CyLab/ARO.
†Patent pending.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AISec’08, October 27, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-60558-291-7/08/10 ...$5.00.

Systems]: Security and Protection; I.2.6 [Artificial In-
telligence]: Learning; H.5 [Information Interfaces and
Presentation]: Miscellaneous

General Terms
Security, Human Factors

Keywords
Security and privacy policies, usable security, user-
controllable learning

1. INTRODUCTION

Motivations.
A broad and growing number of applications allow users

to customize their policies. From the network administrator
maintaining complex and verbose firewall access control lists
to the Facebook user struggling to understand the semantics
of the site’s privacy settings, studies have consistently shown
that novice and expert users alike find it difficult to effectively
express and maintain such policies. In one study, for instance,
test users asked to express file permission policies within the
native Windows XP interface achieved accuracy rates as low
as 25% [5]. This reflects a significant gap between the users’
intended policies and the policies that they manage to express
in concrete policy specification languages and their associated
interfaces.

Given this difficulty, it is highly desirable to support users
in the tasks of policy specification and maintenance, with the
aim of helping them narrow this gap. While a number of
machine learning applications rely on simple forms of user
feedback to improve their performance (e.g. spam filters,
Amazon recommendations), little work has been done to
develop configurations of these techniques that support closer
collaboration between machines and users. Recent studies,
however, have shown that users are often willing to provide
richer feedback and would benefit from richer interactions
(e.g. [12]).

Overview.
In this paper, we present a user-oriented approach to

policy refinement that collects feedback from the user to
help identify (or learn) incremental improvements to her
policy. The most promising improvements are presented
to the user, who in turn decides whether or not to accept
them (see Fig. 1). This user-controllable policy learning

approach contrasts with the black box configuration in which
most machine learning techniques are traditionally deployed.
Rather than restricting the level of control the user has over
the policy model—for example, limiting the user to providing
occasional feedback on system decisions—it allows the user
and the system to work in tandem on a common model.
By focusing on incremental changes to policies originally
specified by the user, it aims to make it easier for the user
to understand proposed changes and decide whether or not
to accept them. At any point in time, the user can override
the system and make her own changes.

This is particularly useful in situations where new
conditions arise (e.g. changes in the user’s social network,
new types of network attacks) and where user-defined
changes are more effective than waiting for the system
to refine policies or relearn from scratch. In addition,
allowing the user to retain control over improvements learned
by the system reduces the risk of the system introducing
particularly bad policy modifications. This is especially
important when dealing with security and privacy policies
where the ramifications of an incorrect policy decision can
be quite costly, but useful in any environment where users are
frustrated by a lack of control. In this paper, we assume policy
models expressed as collections of condition/action rules.
This model is sufficient to capture a broad range of policies,
including a wide variety of security and privacy policies such
as XACML policies.

New Event

Policy
Application

Audit Log

Policy

Policy
Learning

Audit

Policy
Modification

Top Policy
Suggestion(s)

Figure 1: Usage Diagram

In addition, our approach fulfills two requirements that we
consider critical to any security and privacy focused system.
First, the users’ interaction with such policy support systems
must be simpler than their interaction with the languages
used to specify the policies themselves. As a paradigm for this
interaction, we propose feedback on system decisions, which
has the advantage of giving the users concrete examples upon
which to to base their responses.

Secondly, we require complete system transparency, so
that the user maintains control over the policy and any
modifications to it at all times. To ensure control over
system-based changes, our solution proposes a selection of
improvements, leaving control as to whether to adopt any of
the suggestions in the user’s hands. Research has shown that
an integral component of users’ perception of privacy is that
they maintain control over the disclosure of their personal
information [6]; we thus allow the user to make changes
directly to the policy at any time, in contrast to many current

recommender systems, where the user’s sole interaction with
the system is through provision of feedback.

PeopleFinder.
While we emphasize that our findings are general, we

present them with the help of a running example, the
PeopleFinder location-based social network developed at the
Mobile Commerce Lab at Carnegie Mellon University [10],
a screenshot of which is shown in Fig. 2. PeopleFinder
allows users of location-enabled laptops and cell phones
to share their location with their network of friends in a
privacy-sensitive way. Privacy policies in PeopleFinder permit
disclosure based on three criteria: the identity (or group
membership) of the user making the request, the weekday
and time of the request, and the location of the requested
user. Thus, privacy policies can be comprised of rules such
as “Allow disclosure to the group Co-Workers on weekdays
between 9 and 5, but only when I am actually at my office.”
In addition, users of PeopleFinder can provide feedback on
system decisions. The background window shown in Fig. 2
illustrates the feedback interface, whereby users review a
history of requests for their location and indicate their level of
satisfaction with the disclosure decisions made by the system.
Users can also ask for additional details about the requests
and obtain explanations of the system’s actions: for instance,
what policy rule applied to allow disclosure of the user’s
location, or why a request was denied.

PeopleFinder has been deployed in numerous field studies
involving over 100 total users. Detailed log data collected
during these deployments form the basis for our validation
experiments discussed in the coming sections. These data
also illustrate why PeopleFinder is a compelling example
on which to validate our framework: first and foremost,
users of PeopleFinder have demonstrated the usual difficulty
specifying their privacy policies by hand, achieving an
average initial accuracy of 60% [10], and are thus prime
candidates for a support system such as ours.

Furthermore, the observed user behavior indicates that,
when attempting to improve their policies by hand, users
generally make small, incremental changes. As we will
show, the space of neighboring policies is vast; we therefore
conjecture that our approach, which can sample a larger
subspace of neighbors than the user could realistically hope
to, will assist users in selecting the best incremental change.

Contributions.
We introduce a formal model of user-controllable policy

learning for domains where policies can be modeled as
collections of condition/action rules. This includes an
abstract policy transformation model along with a policy
scoring function intended to capture model accuracy,
complexity, and deviation from a current policy. A
neighborhood search instantiation of this model has been
developed and validated in the context of data obtained from
deployments of our PeopleFinder application, introduced
above. Simulations of our incremental policy improvement
techniques on a large number of scenarios representative
of the policies and audit data observed in our deployments
suggest that, with our technique, users starting from the
initial 60% average accuracy should expect to reach 80%
accuracy within about 2 weeks of use and as much as 90%
within 5 weeks. These results appear encouraging, given that
users in our deployments were observed to plateau at about

Figure 2: PeopleFinder System Feedback Interface and Location

79% accuracy when allowed to manually refine their policies
over equivalent periods of time.

2. RELATED WORK
Systems applying machine learning techniques to user

preferences—most often for the recommendation systems of
content and products—have enjoyed great success both in
industry, where the Amazon.com service is arguably the best
known instance [4], and in the scientific literature, where [8,
9, 11] are representative examples. This field is surveyed
in [1]. Many of these systems are, like ours, based on
explicit user feedback, for example in the form of content
ratings. Stumpf et al. [12] examine this feedback interaction
paradigm in detail, concluding that users find it to be a highly
usable manner in which to interact with systems.

Within this preference learning literature, our work is most
closely related to that in the example-critiquing field. In
example-critiquing interactions (c.f. [2]) users refine their
preferences by critiquing example options from among a large
option space. In [13], the authors extend example-critiquing
with suggestions, additional candidate options drawn from
among a diverse set in such a way as to glean information
about the user’s preferences that may not be reflected in the
system’s current preference model.

All of these approaches, however, restrict themselves to
making black box recommendations; the user generally need
not be aware of the underlying model upon which the system
is basing its decisions1. In previous work, we also showed
that black box machine learning techniques can improve
upon the accuracy of user-defined privacy policies [10]. In
some systems, black box techniques are augmented with

1Exceptions are limited to simple models such as the use of
black lists and white lists in spam filters.

explanations, and individual recommendations come with a
justification [3]. In contrast, in the user-controlled policy
learning approach presented in this paper, the user and the
recommendation system operate hand-in-hand, improving on
a common policy model, with the user free to accept, modify,
or reject any recommendations before they are applied. This
departs from previous approaches like that of [7], where
feedback is used simply as training data for an initial learning
phase.

3. A FORMAL MODEL OF INCREMEN-
TAL POLICY REFINEMENT

We adopt a simple formal model of a policy, summarized in
the top part of Fig. 3, that views policies as condition/action
rules that specify what actions should be taken under what
circumstances. We assume that some set of actions Action
can be restricted according to various criteria (e.g. the
time of day or identities of users generating events), all of
which are captured in the set Restriction. A rule describes
the restrictions under which a given set of actions may
be executed. These restrictions are defined as a logical
conjunction: all must be fulfilled before the given actions
may be taken. A rule is thus defined as follows: Rule =
P(Restriction) × P(Action). Policies themselves are then
represented by a set of such rules, connected by logical
disjunction; thus, a policy is simply a set of condition/action
pairings, and we have Policy = P(Rule). We assume that
policies are consistent, in the sense that no rule or set of
rules with non-disjoint premises entail actions that conflict
with one another.

The set of events is represented by the set Event. Events
are evaluated by the function Evaluate, which compares an
event to the appropriate policy and executes either the actions

Abstract policy model
Restriction Set of possible restrictions
Action 3⊥ Possible actions, including

the null action ⊥
Rule = P(Restriction)× P(Action) Set of rules
Policy = P(Rule) Set of policies
Event Set of possible system events
Evaluate :: Policy × Event→ P(Action) Policy enforcement decision function
Feedback Possible user feedback (generally,

Feedback = N)
Audit :: Event× P(Action)→ Feedback Audit function

Instantiation for our friend finder system
Weekdays Set of weekdays
TimeSpan = [StartTime..EndTime] Time spans
WeeklyPattern = P(Weekdays)× TimeSpan Restrictions based on weekly

patterns of time intervals
User Set of users of the system
Group = P(User) Groups of users
Restriction = WeeklyPattern ∪ User ∪ Group Set of restrictions for PeopleFinder
Action = {Disclose,Withhold} Set of possible disclosure decisions
Feedback = {0, 1} Set of possible feedback responses

Figure 3: Policies as Condition/Action Rules: Abstract Model and Instantiation

specified within the rule or does nothing, modeled via the null
action ⊥.

As described, we assume that the users have some means
of giving feedback on decisions that the system has taken
on his or her behalf. The possible feedback options are
modeled via the set Feedback, which could, for instance,
be a binary yes or no or a numeric scale indicating user
satisfaction. It is straightforward to generalize this model and
support feedback in the form of an alternate sets of actions
that the user would have preferred to the actions taken by
the system. This audit data, for a given event R and the
associated evaluation decision D, is captured in our model
via the function Audit(R,D).

Example 1. To further illustrate our policy model, we
instantiate it to an appropriate formalization of the policies
of PeopleFinder, illustrated in the lower half of Fig. 3.
For simplicity, we ignore restrictions based on locations,
but extending this model to incorporate such restrictions
is straightforward. The restrictions incorporated in these
policies take three forms: either a WeeklyPattern, which
describes a time span valid on a set of weekdays, an individual
user from set User representing a friend in the user’s social
network, or a group of users from set Group. In our system,
the possible actions are disclosure of a user location or
rejection of a request, Action = {Disclose,Withhold}, though
we note that disclosure decisions need not always be binary.
Returning an obfuscated version of the data requested is
a strategy often employed in privacy-sensitive applications,
thus one possible disclosure decision could be to return a
downgraded version of the data requested. In PeopleFinder,
the options for user feedback are also binary, Feedback =
{0, 1}. In accordance with our convention, described below,
that policies with minimal scores are most desirable, we let
0 indicates user satisfaction, and 1 user dissatisfaction. This
refinement of the given model suffices to describe the policies
within PeopleFinder.

Policy Transformation.
A central feature of our approach is that usability

is achieved partly by ensuring that suggested changes
to a user’s policy are incremental, selected among a
space or neighborhood of transformed policies that are
close to the user’s existing policy. Here, we define a
framework—summarized in Fig. 4—for the description of that
neighborhood of related policies.

Restrictions and actions, and by extension rules and
policies, can be transformed in various ways, according to
the specifics of the given system. A restriction that limits
disclosure to a set of specified users, for instance, can be
transformed via the deletion of one of the users or the
inclusion of a new one. Our model assumes a function on
restrictions, Transform, which returns the set of neighboring
restrictions reachable from a given restriction by a single,
incremental transition step, however that might be defined in
a refinement of the model. Similarly, the GenActions function
yields all incremental transformations of an action. We extend
these transformations to rules via function GenRules, which,
in addition to taking the union of all possible transformations
on the restrictions and/or actions within the rule, can
eliminate one of those restrictions or actions or add an
arbitrary new one. This transformation is further lifted to
policies, as reflected in function Neighbor, which considers
all possible rule transformations yielded by the GenRules
function, and additionally allows for the deletion of an entire
rule from the policy or the addition of a new rule with no
restrictions or actions, modeled as the addition of the empty
rule (∅, ∅) to the policy. We illustrate an instantiation of this
transition model appropriate for our friend finder in the next
section.

Policy Evaluation.
We now define an objective function by which to evaluate

each neighbor in order to select those that offer the greatest
policy improvement. Here, we assume that the objective is

Transform :: Restriction→ P(Restriction) Restriction transformation function
GenActions :: Action→ P(Action) Action transformation function
GenRules :: Rule→ P(Rule) Rule generation function, where

GenRules((R,A)) =
S

r∈R

S
r′∈Transform(r)(r

′, A)∪S
a∈A

S
a′∈GenActions(a)(R, a

′)∪S
r∈R R \ {r} ∪

S
r∈Restriction R ∪ {r}S

a∈A A \ {a} ∪
S

a∈Action A ∪ {a}
Neighbor :: Policy→ P(Policy) Neighbor generation function, where

Neighbor(P) =
S

p∈P GenRules(p)S
r∈P P \ {r}∪

P ∪ {(∅, ∅)}

Figure 4: Abstract Policy Transformation Model

to minimize the value of a function E on a policy P given a
history of events R that also incorporates user feedback.

We formulate objective functions with respect to three
factors. The most obvious criterion on which to score
policies is the amount of negative feedback they generate.
Assuming a numeric scale of user feedback, where higher
numeric values indicate lower satisfaction (e.g. 0 indicates
highest user satisfaction) this amounts to the sum of
Audit(r,Evaluate(P, r)) for all events r ∈ R.

Maximizing user satisfaction, however, does not protect
against overfitting, nor is it a guarantee of understandability.
Our second factor penalizes fine-granularity for the twofold
purpose of preventing overfitting and giving precedence to
less complex policies that are likely to be more readable.
We assume a function Complex(P) that assigns a measure
of complexity to policy P , where 0 is the least complex. At
this level of abstraction, the most obvious complexity criteria
are the number of rules and the number of restrictions and
actions per rule.

Finally, given that policy suggestions should be user-
comprehensible, we also penalize suggestions that result in
greatest deviation from the user’s existing policy. We assume
a function that assigns a distance metric to two policies P
and Q, ∆(P,Q), where ∆(P, P) = 0. Usability studies will
follow to research how much deviation users find acceptable,
but observed usage of our friend finder application indicates
that most users update their policies by small, incremental
modifications. In general, ∆(P,Q) can be difficult to compute
for arbitrary P and Q. In practice, however, one can often get
around this problem: in the implementation discussed in the
next section, for instance, we view the space of neighbors of a
policy P as a graph and define ∆(P,Q) simply as the number
of edges (i.e. incremental policy transitions) required to reach
Q from P .

Assuming penalty coefficients of γ, ρ, and ϕ for user
satisfaction, complexity, and deviation, respectively, and
letting P ′ be the user’s current policy and R be a history
of events, we can define a general evaluation function for
policies in this abstract model as follows: E(P ′ ↪→ P,R) =
γ

P
r∈R Audit(r,Evaluate(P, r)) +ρComplex(P) +ϕ∆(P, P ′).

This policy evaluation framework, like our model itself,
can be refined as appropriate for specific applications and
settings. In the study we discuss in the next section,
we evaluate PeopleFinder policies based on the number
of dissatisfied (i.e. 1-valued) audits they generate, and
complexity as defined by the number of rules contained
in a policy, and the number of groups, users, and weekly

patterns contained within those rules. Policy deviation is not
penalized explicitly. Rather, we preclude deviation above a
certain threshold by restricting the number of transition steps
allowed when generating the space of neighbors.

4. RESULTS
In this section, we present an instantiation of our model

for incremental policy refinement in the context of the
PeopleFinder application introduced above. We proceed to
describe a simple neighborhood search implementation of
our user-controllable policy learning approach developed
for this application. We report on its performance on
simulated scenarios based on data derived from experimental
deployments of the PeopleFinder system and compare it with
the performance achieved by users who manually modified
their policies during the course of these deployments.

Policies.
Fig. 5 shows a graphical representation of a simple

PeopleFinder policy, as introduced in Fig. 3, with ten contacts
organized into four groups (with some overlap, specifically
Cindy and Heath). Black bars indicate times when disclosure
is permitted—to the groups named on the left, on the
weekdays listed on the right. Only the group “Family” has
access to our user’s location all the time, every day.

A Neighborhood Search Implementation.
A simple, yet elegant implementation of our user-

controllable policy learning approach involves using neigh-
borhood search to explore incremental modifications of the
user’s current policy. These modifications can be generated
using transformation operators that are selected to cover a
meaningful set of easy-to-understand modifications to the
user’s current policy. Results presented in this paper used the
following set of policy transformation operators:

• The deletion of an existing rule, or the addition of a new
rule permitting disclosure to a given user during a given
time span on a given day.

• The expansion or contraction of either the start or end
of a time-span by up to an hour.

• The deletion of a day from a duration within a rule, or
the addition of a day to a rule duration.

• The addition of a person to a group, or the deletion of a
person from a group.

8 9 10 11 noon 1 2 3 4 5 6 7 876
Graduate Students

Alice, Bob, Cindy

Undergraduate Students
Dave, Ed, Felix, Cindy

Faculty
Gina, Heath, Ingrid

Family
Heath, Jure

M–F

T, R

M–F

M–F
S/Su

Figure 5: A simple PeopleFinder policy

Figure 6: While both ten and one hundred neighbors do not show rises in accuracy, one thousand, ten thousand, and one
hundred thousand neighbors generated per iteration all show similar returns in accuracy, about thirty percent over four
weeks.

In the results reported here, suggestions were selected
by randomly generating and evaluating a large number of
neighbors of the user’s current policy. Each neighbor was
equally likely to be selected—clearly, more sophisticated
implementations could assign different probabilities to
different operators. We also experimented with instantiations
of this search procedure that varied based on the number of
neighbors generated for a given policy as well as the number
of successive moves (or policy transformations) allowed at
each step. Intuitively, several successive moves allow the
procedure to explore a wider, more diverse neighborhood,
though at the risk of suggesting policy modifications that are
more difficult for the user to understand. It was therefore
important to evaluate the sensitivity of our approach to
variations in these parameter values and see to what extent
a very limited number of moves (e.g. just one policy
transformation) might be sufficient to generate suggestions
that would yield meaningful improvements in accuracy.

Each time the user-controllable learning procedure is
invoked, it generates and evaluates a number of policy mod-

ifications (based on accuracy, complexity and deviation from
the current policy) and uses the top rated transformations
to suggest possible policy modifications to the user. In the
experiments reported in this paper, we limited ourselves
to generating a single suggestion each time, namely the
policy transformation with the highest score among all those
generated by the neighborhood search procedure.

Empirical Setup.
To validate our approach, we used data derived from

experimental campus deployments of our PeopleFinder
application. These deployments, which spanned between 1
and 8 weeks, involved a total of over 100 participants. The
pilots, which confirmed that users often have great difficulty
articulating their policies, also provided a baseline against
which we were able to compare the performance of our user-
controllable policy learning algorithms. Specifically, detailed
logs collected during the deployments of PeopleFinder were
used to characterize the complexity of initial policies defined
by users, the average number of daily requests users received,

Figure 7: Average accuracy and standard deviation

and the frequency with which users revise these policies.
This information was, in turn, used (1) to simulate a large
number of scenarios representative of user behavior observed
during our deployments and (2) to extrapolate plausible
usage scenarios for our user-controllable policy learning
procedure. In the experiments reported in this section, we
present results from a first set of these scenarios, in which
users received an average of 5 location requests per day,
audited and revised their policies every other day, with policy
revision limited to a single policy modification. Assuming this
level of usage, we report our results on policy improvement
based on the number of weeks using the system. We further
assume the modification selected by the user was the top
ranked suggestion generated by the neighborhood search
implementation of our policy learning algorithm, using all
previously audited data.

Results.
Fig. 6 shows the sensitivity of our policy learning algorithm

to the number of neighbors generated. As can be seen, a
value of 1,000 neighbors was generally sufficient to provide
for fairly rapid improvements in accuracy and greater values
did not significantly increase performance.

Fig. 7 shows average accuracy with standard deviations
across fifty runs of our simulation. It can be seen that
while, early on, the system is only predicting on average
about six incoming decisions correctly out of ten (which is
consistent with the accuracy of policies defined by users in
actual deployments of PeopleFinder), after about 2 weeks,
accuracy reaches about 80% and even climbs to about 90%
if given an extra 2 to 3 weeks. In comparison, the accuracy
of policies refined manually by PeopleFinder users plateau-
ed at around 79%. While a strict comparison between these
two numbers would be inappropriate, these results suggest
that incremental policy learning of the type advocated in this

paper can likely help users define more accurate policies.
Experiments in which the neighborhood search procedure

was allowed to explore multiple consecutive policy trans-
formations provided for slightly faster convergence, though
at the expense of higher computational overhead and with
the drawback of generating suggestions that are likely more
difficult for users to understand.

In summary, even with the large number of parameters
we have controlled above, we have shown that with small
numbers of audited requests per week—within the range of
our earlier field studies—we can generate suggestions that, if
taken, would significantly increase policy accuracy.

Most of all, we see in these results similar and occasionally
even better accuracy than we have seen in our earlier
field studies where users manually edited their policies over
time. This means that making policies change only in
user-understandable increments based on our neighborhood
search should help users bring their policies to convergence
more quickly than without aid.

5. CONCLUDING REMARKS
Users increasingly expect to be able to customize

applications and systems they interact with. This includes
the ability to customize a variety of policies that users are
generally not good at accurately defining. Machine learning
techniques have been used to overcome this challenge by
refining default or user-defined policies by leveraging user
feedback. So far, these techniques have generally been
configured as black box solutions that severely restrict the
ability of users to manipulate the models learned by the
system. In contrast, in this paper, we have introduced a user-
controllable policy learning approach that enables the user
and the system to work hand in hand on refining policies
by working on a common model. Our work accomplishes

this by learning incremental policy modifications which are
presented to the user as suggested changes to their current
system policy.

In this article, we introduced a formal model of incremental
policy modifications and described a neighborhood search
implementation of it. An important contribution of our
work has been to show that incremental policy modifications
seem sufficient to yield meaningful improvements in policy
accuracy over relatively short periods of time. This result is
important, as it suggests that it is possible to reap the benefits
of machine learning techniques while moving away from their
traditional black box configurations, all the while leaving the
user in control. User retention of control reduces the risk of
the system introducing particularly bad policy modifications.
This is of particular importance in the security and privacy
spheres but is desirable in all settings where the lack of
control offered by traditional machine learning configurations
is a detriment to the user experience.

6. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: a survey of the
state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on, 17(6):734–749,
2005.

[2] Boi Faltings, Pearl Pu, Marc Torrens, and Paolo
Viappiani. Designing example-critiquing interaction. In
Proceedings of the 2004 International Conference on
Intelligent User Interfaces, User modeling I, pages
22–29, 2004.

[3] Jonathan L. Herlocker, Joseph A. Konstan, and John
Riedl. Explaining collaborative filtering
recommendations. In CSCW ’00: Proceedings of the
2000 ACM conference on Computer supported
cooperative work, pages 241–250, New York, NY, USA,
2000. ACM.

[4] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: item-to-item collaborative filtering.
Internet Computing, IEEE, 7(1):76–80, 2003.

[5] Roy A. Maxion and Robert W. Reeder. Improving
user-interface dependability through mitigation of
human error. International Journal of Man-Machine
Studies, 63(1-2):25–50, 2005.

[6] Christena Nippert-Eng. Privacy in the United States:
Some implications for design. International Journal of
Design, [Online] 1:2, Aug 2007. Available at
http://www.ijdesign.org/ojs/index.php/

IJDesign/article/view/67/30.
[7] Michael J. Pazzani. Representation of electronic mail

filtering profiles: a user study. In IUI ’00: Proceedings of
the 5th international conference on Intelligent user
interfaces, pages 202–206, New York, NY, USA, 2000.
ACM.

[8] Michael J. Pazzani and Daniel Billsus. Learning and
revising user profiles: The identification of interesting
web sites. Machine Learning, 27(3):313–331, 1997.

[9] Al Mamunur Rashid, Istvan Albert, Dan Cosley,
Shyong K. Lam, Sean M. McNee, Joseph A. Konstan,
and John Riedl. Getting to know you: learning new
user preferences in recommender systems. In IUI, pages
127–134, 2002.

[10] Norman Sadeh, Jason Hong, Lorrie Cranor, Ian Fette,

Patrick Kelley, Madhu Prabaker, and Jinghai Rao.
Understanding and capturing peopleâĂŹs privacy
policies in a people finder application. In Proceedings of
the 5th International Workshop on Privacy in UbiComp
(UbiPriv’07), September 2007.

[11] J. Ben Schafer, Joseph A. Konstan, and John Riedl.
E-commerce recommendation applications. Data Min.
Knowl. Discov, 5(1/2):115–153, 2001.

[12] Simone Stumpf, Vidya Rajaram, Lida Li, Margaret
Burnett, Thomas Dietterich, Erin Sullivan, Russell
Drummond, and Jonathan Herlocker. Toward
harnessing user feedback for machine learning. In IUI
’07: Proceedings of the 12th international conference on
Intelligent user interfaces, pages 82–91, New York, NY,
USA, 2007. ACM.

[13] Paolo Viappiani, Boi Faltings, and Pearl Pu.
Preference-based search using example-critiquing with
suggestions. J. Artif. Intell. Res. (JAIR), 27:465–503,
2006.

