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Abstract

Over the years, competitions have been important catalystsfor progress in Atrti cial Intelligence.
We describe one such competition, the Trading Agent Competion for Supply Chain Management
(TAC SCM). We discuss its signi cance in the context of today's global market economy as well as
Al research, the ways in which it breaks away from limiting assumptions made in prior work, and
some of the advances it has engendered over the past six yearSAC SCM requires autonomous
supply chain entities, modeled as agents, to coordinate thieinternal operations while concurrently
trading in multiple dynamic and highly competitive markets . Since its introduction in 2003, the
competition has attracted over 150 entries and brought togéher researchers from Al and beyond
in the form of 75 competing teams from 25 di erent countries.
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Introduction

Many important developments in Arti cial Intelligence hav e been stimulated by organized com-
petitions that tackle interesting, dicult \challenge" pr oblems. Examples include chess, robot
soccer, poker, robot navigation, stock trading, and others Economics and arti cial intelligence
share a strong focus on rational behavior. Yet the real time @mands of many domains do not
lend themselves to traditonal assumptions of rationality (Simon, 1979; Wellman, 1996). This is the
case in trading environments, where self-interested entigs need to operate subject to limited time
and information. With the Web mediating an ever broader range of transactions and opening the
door for participants to concurrently trade across a numberof markets, there is a growing need
for technologies that empower participants to rapidly evaluate very large numbers of alternatives
in the face of constantly changing market conditions. Al teciniques such as neural networks and
genetic algorithms are already routinely used in support ofautomated stock trading scenarios. Yet,
the deployment of these technologies remains limited, andheir proprietary nature precludes the
type of open benchmarking that is critical for further scienti ¢ progress.

The Trading Agent Competition for Supply Chain Management (TAC SCM) ! was conceived
by the third author in 2002 as a way of focusing the attention d researchers in Al and beyond
on the increasingly complex problem of managing supply chais in today's global economy. More
speci cally, it was designed to foster the development of nes techniques to manage risk and adapt to
changing conditions while concurrently trading in multipl e market places (Sadeh et al., 2003a). The
initial version of the game was designed and implemented though a collaboration between Carnegie
Mellon University and the Swedish Institute of Computer Science (Arunachalam and Sadeh, 2005;
Eriksson et al., 2006), with subsequent re nements introdwed through a collaboration with the
rst author (Collins et al., 2005). Over the years, all three authors have also contributed successful
entries in the competition.

Supply chains are the foundation of today's global economywith annual ows worth tens of
trillions of dollars. As companies continue to focus on corecompetencies and outsource functions
ranging from procurement of raw materials and components tologistics, after sales support, and
recycling/remanufacturing operations, they weave increaingly complex networks of interdependent
organizations often spanning multiple continents. Pressue to shorten product lifecycles, reduce
costs and o er higher levels of customization is simultaneasly forcing organizations to explore
increasingly exible contractual relationships (e.g. price, volume or service-level exibility) aimed
at reducing inventory risks while providing protection against shortages and price uctuations. By
their very nature, these more exible relationships place apremium on the ability of supply chain
entities to rapidly adapt to changing market conditions. Th ose capable of doing so reap signi cant
bene ts in the form of more e cient operations and higher pro t margins. Yet failures under these
less forgiving scenarios can also be catastrophic, ranginfjom companies going out of business
because they made the wrong bets, to critical supplies faitig to be delivered in time in the face of
disruptive events such as hurricanes, strikes or pandemics

TAC SCM builds on the observation that supply chains should not be viewed as monolithic
entities that can be centrally optimized, but instead consist of multiple self-interested entities each
operating according to its own objectives and policies (Swainathan et al., 1998). Whereas each
real-world supply chain exhibits its own peculiarities, TAC SCM is designed to capture major
sources of complexity common to large numbers of supply chas, while shielding researchers from

1See http://www.tradingagents.org for more information



less relevant idiosyncracies. Supply chain entities are naeled as autonomous agents that concur-
rently compete with one another in both end-product and compaent market places subject to both
exogenous and endogenous sources of uncertainty. In artiial intelligence terms, these agents must
act autonomously to maximize their expected utilities in an environment that is highly dynamic,
partially observable, and strongly a ected by the actions of competing agents.

Starting with the rst open competition in 2003, TAC SCM has a ttracted over 150 entries from
75 teams distributed across 25 dierent countries. These tams represent a variety of research
interests, including supply-chain management (Sardinha etal., 2009), agent architectures (Collins
et al., 2009a; Benisch et al., 2009), economic decision-mailg (Kiekintveld et al., 2006; Ketter et al.,
2009), empirical game theory (Jordan et al., 2007), dynamigricing (Benisch et al., 2006a; Ketter
et al., 2007), machine learning (Pardoe and Stone, 2007), enomic market modeling (Ketter et al.,
2009), fuzzy logic (He et al., 2006), stochastic optimizatin (Benisch et al., 2004), and a large
variety of other areas’.

In the following sections we present the TAC SCM game scenami and review the decisions
competing supply chain trading agents have to make in the gara. Along the way, we discuss some
of the challenges associated with the design of the game and successful agents. We highlight the
game's relationship to current and future supply chain pradices. We also review how TAC SCM
has been used in education and what is required for new team®tenter the competition, including
the availability of software that can help to develop and ne-tune agents.

The TAC SCM scenario

The TAC SCM game captures key features of a multi-tier supply dain with multiple actors com-
peting in each tier. The game models 220 days (or 44 ve-day wdes, which we informally refer to as
"“a year") of operation in 55 minutes of real time. Particip ating agents must operate through three
conceptual phases that are characteristic of the launch, stady production, and eventual phasing
out of multiple end-products. The end products are assumed tde di erent types of PCs, though
the simulation model is in no way restricted to this particul ar type of product.

Each PC model requires a di erent combination of components To promote lean supply chain
management practices, TAC SCM assumes that PC models are pisad out by the end of the one-
year period, and their residual value and that of the major canponents they require is e ectively
zero. In other words, the scenario penalizes agents that hod more components than they need or
assemble more PCs than they are able to sell. Teams compete leptering their supply chain trading
agents in the competition and playing a large number of gamesgainst di erent combinations of
competitors. Each trading agent is responsible for procumg components from multiple suppliers,
manufacturing nished products (di erent types of PCs), an d selling those products to customers.
All the while it competes with other trading agents entered by other teams, who are also trying to
purchase the same components and sell the same products, asngponent and end product market
conditions change (e.g. because of the actions of other tréily agents or because of exogenous
conditions such as suppliers losing some capacity or demanfbr some particular types of PCs
dropping over time). By requiring agents to compete in hundreds of games, the competition is able
to evaluate agent performance across a large number of markeonditions and competitive settings

2A Google Scholar search on " TAC-SCM" returns over 350 hits. While some of these links may be duplicates or
erroneous, they give a sense of the intensity and breadth of research ativity the competition has stimulated over the
past several years.



- from markets with low product demand and high component avalability, to markets with high
product demand and low component availability, to anything in between including markets that
transition between these extremes for di erent end product and components.

The schematic overview of the TAC SCM scenario shown in Figue 1 will help explain the
speci cs of the game. Several agents (e.g., MinneTAC, TacTe Botticelli) compete with each other
as manufacturers of personal computers, purchasing compat components (CPU, motherboard,
hard drive, and memaory) from suppliers (IMD, Pintel, etc.) i n a procurement market, and selling
their nished products to customers in a sales market. Each gent has identical production and
warehouse facilities, each sees the same customer demanadaeach initially has equal access to
suppliers, although reputation e ects can result in preferential treatment as the game progresses.
Customer demand and supplier capacity and prices are highlyariable both within the course of a
game and across di erent games. Each agent starts with no inentory and an empty bank account,
and must borrow (and pay interest) to build up an inventory of computer components before it
can begin assembling and shipping computers. The agent witthe largest bank account at the end
of the game is the winner of that particular game; performane of agents is averaged across many
games in the competition setting. Actions of other agents ag visible only through their e ects on
the customer and supplier markets.

Customers

Agents l
MinneTAC TACTex Botticelli CMieux DeepMaize
RFst Offers | Orders v Shipments |
Suppliers ‘ IMD ‘ ‘ Pintel ‘ ‘ Basus ‘ ‘ Macrostar ‘ Mec ‘ ‘ Queenmax ‘ ‘ Watergate ‘ Mintor ‘

Figure 1: Schematic view of TAC SCM simulation scenario. Agets assemble and sell 16 di erent
products, using 10 component types purchased from supplist

Figure 2 shows a typical sequence of interactions between aAC SCM agent and its environ-
ment over the course of a simulated day. Each day lasts 15 seads, which limits the reasoning time
available to agents. In the real world, supply chains requie the management of many more com-
ponents with many events accruing during the course of the dg a 15-second day in the TAC SCM
game is therefore not unrealistic. At the beginning of each ycle, each agent receives a bundle of
messages from the server, representing customer demand,stamer orders arising from bids placed
during the previous cycle, status updates from the bank and warehouse, and supplier o ers arising
from supplier RFQs issued during the previous cycle. Beforeéhe end of the cycle, the agent must
decide how to bid on new customer RFQs, which supplier o ers © accept, what parts to request
from suppliers, what nished goods to ship to customers, andhow to allocate its limited factory
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and inventory resources to production of new nished produds. The actual delivery of components
from suppliers to the agent's warehouse, and delivery of nshed products from the agent's ware-
house to customers, along with associated payments from antb the agent's bank account, are
handled by the server.
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Figure 2: Timeline of an agent's interactions with its environment.

From an Al perspective, the TAC SCM game requires agents to cocurrently compete in multiple
markets (the procurement and sales markets) subject to numeus sources of uncertainty, while
simultaneously managing their internal production and logistics operations. The markets also
exhibit some level of interdependence. For instance, di eent end products require di erent but
overlapping combinations of components, and hence demandif di erent components will have
some correlation over time. The agents also have to operate ith incomplete information. For
instance, agents do not know how market conditions will evole and they do not see the private
data of other agents such as their inventory positions, thei order books, the prices at which they
procure components from suppliers, the component purchasethey have made, the price at which
they are selling di erent PC models on a given day, etc. Yet, @ch day as they place requests for
components and o er end products for sale, they receive fedzhck from the environment. This
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feedback comes in multiple forms, including whether they maage to sell di erent types of PCs and
at what price, how many components they manage to procure from di erent suppliers, at what
price and leadtime. Agents can leverage this feedback to upate probabilistic models of the markets
and of what other agents are doing. These models in turn can He them dynamically adapt their
strategies. Strategies can include adjusting one's produanix, stocking up on components that are
expected to be in low supply, and increasing the price of prodcts that seem to be in high demand
or for which there seems to be little competition.

The following three subsections further detail elements ofthe game's procurement market,
production and logistics, and the sales market. These subsé&ons are intended to convey the level
of sophistication involved in the design of the TAC-SCM Compdition. Some readers may just want
to jump to the section on \Agent decision problems."

Procurement market

The procurement market consists of eight suppliers, each ofvhich carries two product lines. Each
supplier operates according to a lean, make-to-order policyln other words, production is driven by
actual demand rather than demand forecast. The capacity of ach supplier production line varies
from day to day according to a mean-reverting random walk that captures e ects such as loss of
capacity (e.g. due to maintenance) and exogenous demand (g. components used in products
not modeled in this supply chain). Agents may request price gotes from suppliers, specifying a
particular component, quantity, delivery date, and reserve price. Suppliers respond with quotes
that re ect how busy they are, with higher quotes being returned when they are running near
capacity and lower quotes when they have lower order books. Uplier commitments are based
on estimates of their future capacity and, as such, are not etirely reliable. As a result, capacity
variations can lead to shipment delays.

To build a nished product, an agent needs one each of four dierent component types: a
CPU, a motherboard, a disk drive, and a memory card. There aretwo CPU suppliers, Pintel
and IMD. Their processors are not interchangeable; Pintel ®Us must be assembled with Pintel
motherboards, and IMD CPUs must be assembled with IMD motheboards. Both Pintel and IMD
make \fast" and \slow" CPUs. Disk drives and memory cards ead come in two di erent sizes.
The result is that the CPUs are single-sourced, while all othe component types are dual-sourced.
The lack of substitutability between CPU sources means thatthe CPU market is more volatile and
unpredictable than the markets for other component types.

Individual suppliers are approximately revenue-maximizing entities, and they manage risk in
two ways. First, they will not commit their entire capacity a t any one time; instead, they reserve
a portion (approximately half) of future capacity for futur e business. Second, they keep track of
whether agents follow through with orders when o ers are maa. The result is that agents must
manage their individual \reputations" with respect to each supplier, by keeping their ratio of orders
to o ers above a threshold. Failure to do so results in higherprices and lower availability of parts
in comparison with competing agents.

The procurement market generally yields lower prices for lager lead-times, but at times of
oversupply, prices can be lower for very short-term requests Order lead-times can extend to the
end of the game, which is 220 days at the beginning of a game. Ehlongest customer lead-time
is 12 days, and supplier prices tend to peak in the range of 8-18ays lead-time. Supplier orders
require a 10% down-payment, and so the cost of funds can be a sigcant factor for long lead-time
orders.



Production and logistics

Once an agent has acquired the necessary parts to assemblenquuters, it must schedule production
in its nite-capacity factory. Each computer model requires a set of parts, and a speci ed number
of assembly cycles. Assembled computers are added to the afs nished-goods inventory, and
may be shipped to customers to satisfy outstanding orders.

Warehouse capacity for both components and nished producs must be purchased at a price
that is a function of the value of the stored materials. This eectively places a premium on keeping
inventories under control. In addition, each individual component type is used in multiple types
of nished goods, across multiple market segments. The reduis that there is potentially some
opportunity cost to converting parts to nished goods witho ut having sales commitments for the
nished goods. Further incentive to keep inventory under cantrol arises from the fact that at the
end of the simulation, unsold inventory has no residual vale.

Sales market

The sales market uses a reverse, rst-price, sealed-bid auctih mechanism. Each day, customers
issue requests for quotes (RFQs) for the products they wishd buy. Each RFQ speci es a computer
model, quantity, delivery date, and a maximum or reserve price, as well as a daily penalty amount
that the agent must pay if it fails to meet its sales commitments. Penalties can make failure to
ship on time quite expensive, and customer orders are canesl if they are more than ve days late,
which also eliminates income from the sale.

The sales market trades in 16 product types, segmented into igh-end, medium, and low-end
products. Customer demand varies from day to day independdty in each segment, controlled
by a trend that changes daily through a bounded random walk. Hgure 3 shows a qualitative
view of the supply and demand behavior of one segment of the stomer market. The shape of
the demand curve is controlled by the current overall demand and by the uniform distribution of
reserve prices between 0.75-1.25 of the nominal cost of comments. The shape of the supply curve
is limited at the high-quantity end by the inventory status an d aggregate production capacities of
the competing agents, and at the low-price end by the minimum ost of components. The detailed
shape of the supply curve is a function of the combined biddig strategies of the competing agents.
It is not directly observable within a game, but segments of t can be deduced through post-game
examination of data.

1.25 _|

N
o
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Quantity

Figure 3. Supply and demand in the sales market.



The game design challenge 2

Designing an economic game that serves a research agenda apibvides an interesting and rea-
sonably accessible challenge to researchers is a di cult utkertaking. The original goals for TAC
SCM, described by Arunachalam and Sadeh (2005), included edism and generality, uncertainty
and incomplete information, strategic interactions, and smplicity. The scenario must have enough
realism to be relevant to practitioners, enough generalityto be representative of a broad range of
supply-chain situations, and enough subtlety to require newideas, without unnecessary complexity
that would make agent design and data analysis more di cult than it needs to be. Supply chain
management must deal with uncertainty, risk, and limited information. An interesting simulation
scenario should include signi cant variability in prices, availability, and demand, and should limit
visibility of markets and competitors to approximate the vi ew of a real-world supply-chain manager.
The scenario should reward careful management of risk. Theame and its market mechanisms must
allow and encourage strategic behavior, and yet be free of untended exploitable weaknesses. In
addition, in order to attract enough interest to provide good competition, game designers must pro-
vide the simulation infrastructure and a basic agent framewvork that encapsulates the interactions
between the infrastructure and the agent. Serviceable visalization and analysis tools are needed
in order to demonstrate the concepts of the game, and to suppo researchers as they develop and
analyze their agents.

The design of TAC SCM was carefully tuned over the rst three years to make the competition
interesting and challenging. Empirical evidence based onite many games played over the years by
agents developed by 75 di erent teams suggests that opportaities for strategic manipulation that
have the potential to subvert the purpose of the game have beeeliminated (Ketter et al., 2004;
Wellman et al., 2005). Agents must manage their reputationswith respect to each supplier; this
discourages agents from creating false demand by making lge requests and then turning down
the resulting o ers, thereby in ating prices. Because supgiers reserve some capacity for future
demand, it is very di cult to \corner" the market for some com ponent type. It is still possible and
indeed common for agents to manipulate prices in both the sa&ls and procurement markets. For
example, knowing that agents can see only the highest and laest order prices in the sales market,
agents can make isolated o ers well below current prices, threby seeding opponent price models
with misleading information. This technique can be used to dive prices down with minimal impact
on pro ts, in situations where prices are above the \knee" in the customer demand curve, or when
an agent believes it has a lower procurement cost basis for geci ¢ product than its competitors.

The parameters of the scenario are set to ensure that decisiccoordination between procurement
and sales is reasonably challenging. Figure 4 is a histograwf the daily customer RFQ count over
200 games, approximately 44,000 observations, which showlse overall balance between supply and
demand. Superimposed on the histogram are the mean custome&emand, the aggregate capacity
of six agent factories, and the expected supplier capacity.The key message from this balance is
that an agent can expect to buy enough parts to keep its factoy busy, but a strategy that simply
tries to keep the factory busy is likely to result in a large unsold inventory at the end of an average
game because the expected customer demand cannot absorb theoduction of a set of agents that
behave in this way*. On the other hand, there are some games in which the agents naot supply all
the demand, and the variability inherent in the simulation can lead to serious imbalances between

®Note to the reviewers: This section could be a sidebar
4This balance was rst introduced in the 2005 competition. Destructiv e price wars were a common problem in
the early rounds of that competition until the full-production agents  were eliminated



customer demand for speci ¢ products and the availability o the parts required to build them.
The best agents are able to adapt their behaviors to exploit hese imbalances.

RFQ count ——
350 | mean demand —— |
supply ——

production —+—
300 E

250 b
200 + b

150 b

Observations

100 b

50 - b

o Il Il Il Il Il Il
0 50 100 150 200 250 300 350

RFQ count

Figure 4: Distribution of demand in the TAC SCM customer mark et, compared with the expected
availability of parts, and the aggregate production capacty of six agent factories.

The game platform consists of a server that simulates not ol the suppliers and customers,
but also the agent factories and warehouses, along with a b&n Agents join a simulation through
standard Internet connections. This allows research teamso work with their own tools and hard-
ware, and greatly simpli es the operation of open competitions. Since many agents are essentially
compute-bound, this structure arguably gives some advantag to teams who have more or better
hardware at their disposal. So far, there is little evidencethat this is a factor; agent design appears
to be a signi cantly greater predictor of performance than hardware capability.

Agent decision problems

To be competitive, an agent must purchase components and maracture products it can sell, and,
to the extent possible, it must sell what it has built at a pro t. After seven years of competition and
publication, the competition in the nal stages of the annual tournament is quite intense. Prot
margins are very slim, and prices in the customer market areeddom very far above the component
costs seen by the agent with the most e ective procurement stategy. Prices in both the customer
and supplier markets can be quite volatile as agents continally adjust their behaviors to take
advantage of the markets and of any weaknesses in their oppents. Kiekintveld et al. (2006)
identify three key issues that a successful TAC SCM agent musaddress: dealing with substantial
uncertainty in a highly dynamic economic environment, in competition with other self-interested
agents whose behavior is naturallystrategic.

A successful agent design for TAC SCM must make a large numbesf decisions every 15 seconds.
Attempts to construct and maintain opponent models must acoount for the fact that the sales and
procurement markets are \oligopoly" markets, which means hat one must model and anticipate the
e ects of ones own actions. For example, any attempt by an aget to increase its market share for
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a highly pro table product will typically depress prices an d hence the pro tability of that product.
It also means that daily variations in the behavior of a compditor can introduce signi cant \noise"
into the price signals that are observed by an agent.

In the remainder of this section we describe the basic decish problems a successful TAC SCM
agent must address, and review some of the successful appobes that have been developed as a
result of the ongoing competition.

Procurement

Agents seek to purchase raw materials (computer componenfsat a price that will allow nished
goods to be sold at a prot. But purchasing low-cost componens is not enough. There is a limit
to the rate at which the agent's factory can absorb componers, and components that cannot be
assembled into usable products are worse than useless { thegpresent sunk cost that may not be
recoverable, and the agent must pay to store them.

Most agents use some sort of projected inventory model to dermine their procurement needs,
along with a supplier pricing model. For example, Kiekintveld et al. (2004) describe an inventory
model that projects future inventories by adding supplier shipping commitments and subtracting
existing and expected future consumption. Whenever a futue shortage is discovered, the agent
forms a goal of replenishing its inventory to cover the shorage. If the expected shortage is more
than a few days in the future, the agent must decide whether toplace an order immediately, or
wait until some later date and place an order with a shorter lead-time. This decision is driven by a
supplier pricing model that observes supplier price quoteso build up a history of prices at various
lead-times; the agent then uses this model to estimate boundsn each supplier's uncommitted
capacity (this works because supplier pricing is a determiistic function of uncommitted capacity,
but the signal is sparse and extremely noisy), and it uses thee capacity estimates to predict current
and future prices.

Benisch et al. (2006b, 2009) describe a procurement procefisat spreads its requests to each
supplier over time in a way that attempts to minimize overall cost. The di erence between target
and predicted inventory is projected out to the end of the gane, and each projected shortfall
initiates a process that distributes purchasing across awable suppliers and across time, attempting
to exploit minima in the prices predicted by its supplier-price model.

Procurement is arguably the most di cult decision problem i n the TAC SCM scenario. Pos-
sibly because of this di culty, there is strong evidence from work by Andrews et al. (2008) that
procurement performance is the best predictor of overall agnt performance. This observation was
also one of the motivations behind the launch in 2007 of a sepate Procurement Challengefocusing
speci cally on benchmarking agents' procurement strategés (Sardinha et al., 2009).

Production scheduling

In the early competitions, some agents experimented with vaous methods for building near-optimal
production schedules. For example, Benisch et al. (2004) deribe a stochastic programming formu-
lation for production scheduling. The goal was to maximize te probability that products produced
would actually be sold. At any given time, an agent has a set obutstanding customer orders, with
due dates spread out over up to 11 days in the future. It also ha a set of customer RFQs on
which it can place bids, and it has some expectation of futuredemand. In the approach described
by Benisch et al., bids are placed before the production sclikile is generated. The production
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schedule attempts to satisfy all outstanding commitments rst, ordered by due date, then as many
outstanding sales o ers as possible, ordered by expected pitability and due date. The schedule
is projected into the future by several days, and the availaliity of uncommitted capacity is used
to control sales volume targets.

Most agents simply keep track of uncommitted production cagacity and use it to constrain sales
guotas, and schedule production using a straightforward geedy method. Evidence from Andrews
et al. (2008) suggests that production scheduling performace is not a strong di erentiating factor
among existing agents.

Sales

During each simulation cycle, each agent sees the full custoer demand in the form of a bundle
of RFQs. It must decide which requests to bid on, and what the lid prices should be. The agent
must consider a number of factors in making this decision, ioluding its own current and expected
inventory situation, expected cost of inventory replenishment, existing sales commitments, available
factory capacity, and its own models of future demand and maket prices. A number of approaches
have been tried for controlling this decision, ranging fromfuzzy logic to linear programming. All of
them must somehow solve a constrained optimization problenwith some degree of approximation,
in limited time.

The MinneTAC agent (Ketter et al., 2007) controls its biddin g in the customer market on three
principles. First, market prices are tracked and projectedusing a model that is trained with a
large body of historical game data, and ne-tuned using in-gane market monitoring. A Gaussian
mixture model classi es market situations or \economic regmes" (Ketter et al., 2009). Projection
of future price trends uses a recursive Markov model. Givenales and procurement price predictions
over a planning horizon, a linear program sets daily sales cputas for each product over the horizon,
subject to constraints arising from inventory, factory capacity, and (projected) customer demand.

The SouthamptonSCM agent (He et al., 2006) uses fuzzy reasorg to decide which customer
requests to respond to, and what the bid prices should be. It®verall goal is to maximize its factory
utilization, as long as it can do so pro tably. Demand and inventory are represented as fuzzy sets,
and a set of rules convert those into control variables whichare combined into a \price adjustment
factor" that is applied to the prices observed in the market on the previous day. SouthamptonSCM
uses a separate fuzzy rule base to control pricing near the énof a game, where the criterion for
pro tability requires moving as much of its remaining inventory as possible.

Benisch et al. (2006a) describe a very di erent approach to picing in the sales market. Their
CMieux agent treats sales pricing as acontinuous knapsack problemThe goal is to o er a price to
every potential customer (at least those for which a pro table sale is possible) that maximizes total
revenue, while avoiding overcommitment of its inventory ard production capacity in expectation.
They show that the optimum price sets the demand fraction for the di erent products such that
the rst derivative of a \reward function” is equal across al | products.

The small number of players in the TAC SCM markets has been a tepting target for opponent-
modeling techniques. Unfortunately, the specic actions d individual opponents are not visible
during the simulation { only their aggregate e ects on the markets can be observed. However,
the simulation server keeps a detailed log of agent interaébns, and this data is available after the
completion of each tournament round. Pardoe and Stone (200Q%have experimented with a variety
of opponent modeling schemes, using these detailed simulah records. They were able to show
that there is some advantage to learning from a body of trainhg data containing exactly the mix
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of opponents that one is competing against, but it is not a lage e ect.

One way in which progress is evident over the years of the constition is through the distribution
of sales prices. We see this in two di erent ways. First, agets have become more consistently
pro table, although they do not always earn back their initi al investment. This means, for example,
that price wars have been rare in the more recent tournaments Second, the daily sales price ranges
for given products averaged around 3% in the 2008 tournamentand 1.5% in the 2009 tournament.
In contrast, the width of the daily price distributions duri ng the rst two years of competition
averaged over 7% and frequently went well over 10% in tournamnt games.

Decision coordination

The TAC SCM scenario places a premium on e ective coordinaton of decisions a ecting multiple
markets and internal resources. Inventory planning is comficated by the fact that a given part
may be used in multiple products, and a shortage of a particukr part can prevent an agent from
participating in signi cant segments of the customer market. Because demand in the three customer
market segments can vary independently over a wide range, atrategy that strongly decouples
procurement from sales is unlikely to meet customer demand ectively without carrying excess
inventories of the parts that are not currently in demand. In the rst years of the competition,
before the customer market was segmented, this decouplingas a very common strategy. Ketter
et al. (2010) identify the problem of decision coordinationas a crucial element in the design of
an agent for TAC SCM, and review the published literature on agent design to discover a wide
variety of approaches to this problem. The authors believe hat the existence of such variety is an
indication that much is yet to be learned about designing sub agents.

Forecast cRFQs, CMieux
Predicted profits
N cRFQs, orders
Forecast Strategy )
DTP offers o
J Bidding £
Forecast Target ATP g‘
delays Y demand O
S
" Inventory | Projected | Production
o] projector inventory” | Scheduling
o
o ) .
3 Supplier Optimistic
orders schedule
RFQs

offers Procurement

orders

Figure 5: CMieux coordinates decisions using a separate Sttegy module.

The CMieux agent (Benisch et al.,, 2009) from Carnegie Mellonis an example of an agent
that clearly separates decision coordination from detailsof procurement, sales, and production
scheduling. A schematic diagram of the CMieux design is showin Figure 5. The Strategy module
sets overall goals for the remainder of the system, such as ¢portion of expected demand to target,
and the portion of the production schedule ATP, or Available to Promise quantities for each end
product) that should be sold to customers OTP, or Desired to Promise quantities for each end
product). The Forecast module observes the markets and malsepredictions about demand, prices,
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and delays in supplier shipments. The Inventory Projector @mbines that with current inventories
and expected supplier deliveries to generate inventory prigctions over time. Procurement uses the
projected inventory along with an optimistic version of the production schedule (what Production
would expect to build if there were no inventory constraints) to decide what to order from suppliers,
and supplies the Inventory Projector with actual supplier orders. CMieux reached the nals in 2007,

2008 and 2009.
State DeepMaize P
Estimation
Customer Mkt.
Predictions

Supply Mkt.
Predictions

(%]
g Long-term GE)
3 Component |1 Production L | proqyct %
g Values Schedule Values =
3 O
i ll x
- [Procurement ] [ Scr?e(:dz';?,ng] [ Sales |

—_ —_

Figure 6: DeepMaize coordinates decisions through a long-tm production schedule, using value-
based decomposition.

The DeepMaize agent (Kiekintveld et al., 2006) from the Uniwersity of Michigan coordinates its
decisions through \value-based decomposition”. In this appoach, a long-term production sched-
ule is constructed by incrementally adding the products tha are expected to return the highest
marginal pro ts at multiple points in the future. The genera | scheme is summarized in Figure 6.
This approach depends on reasonably accurate pricing modgfor both the customer and supplier
markets that e ectively capture price-quantity tradeo s. T he two prediction components shown in
the diagram, along with an o -line machine-learning process,are responsible for producing those
models. Given the resulting long-term production schedulethe Procurement module attempts to
provide the necessary components to Il it, and Sales uses ito set prices in the customer market.
DeepMaize has been a nalist in all of the TAC SCM tournaments. It placed third in 2006 and
2007, and rst in 2008 and 2009.

Real-world agent-enabled SCM

Since the mid nineties, arti cial intelligence techniques have contributed to the development of new
supply chain decision support techniques, starting with the work of Swaminathan et al. on agent-
based supply chain modeling and simulation, which was appéd in the context of business process
re-engineering e orts at major electronics and grocery rms(Swaminathan et al., 1998). Around the
same time, Sadeh et al. also reported on the initial deploymet and evaluation of Al-based decision
support tools for supply chain coordination at Raytheon (Saleh et al., 1998). This work led to the
development of the MASCOT multi-agent architecture for coordinated decision support within and
across multiple supply-chain entities (Sadeh et al., 2003bjand demonstrated how agent-assisted
lateral coordination of manufacturing operations across oganizations can increase both pro tability
and customer responsiveness in the face of high load factoesd a variety of contingencies. A third
line of work strongly in uenced by research in arti cial int elligence has seen the development and
elding of technologies for reverse supply chain auctions. This includes work by Wurman et al.
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(1998) on con gurable auction technology eventually conmnercialized by Ariba. It also includes
work on more expressive mechanisms for reverse auctions awrcted by Sandholm et al. (2005) and
commercialized by CombineNet, a company that conducts larg-scale procurement auctions where
buyers and sellers can express a wide range of constraints égpreferences beyond price.

Among other objectives, TAC-SCM was designed to promote the dvelopment and benchmark-
ing of adaptive supply chain trading technologies requiredto better manage risk in supply chain
environments characterized by increasingly exible contactual relationships, such as those result-
ing from reverse auctions organized by companies like CombéNet. These long-term contractual
relationships are typically characterized by exibility i n price, quantities and service levels and often
entail arrangements where supply chain entities need to dyamically manage complex portfolios
of exible supply chain contracts (Martinez de Albeniz and Simchi-Levi, 2005). This work itself
was strongly in uenced by studies conducted in the mid to late nineties, showing that, contrary
to popular belief, a number of manufacturers did not rely sokly on long-term strategic partner-
ships with suppliers and that more research was needed on hot e ectively manage portfolios
of buyer-supplier relationships covering a wide spectrum ofpossible arrangements (e.g. study of
Japanese car manufacturers by Bensaou (1999)). A review of ouels for constructing short-term
and long-term contracts in business-to-business markets hasden conducted by Kleindorfer and Wu
(2003). Elmaghraby (2000) also provides an excellent revie of tradeo s between di erent sourcing
strategies. Martinez de Albeniz and Simchi-Levi (2005) haveshown that portfolios of quantity
exible procurement contracts used in combination with spot market procurement can contribute
to higher expected pro ts and lower nancial risk. Nagali et al. (2008) have reported using a sim-
ilar risk management model to support the development of potfolios of procurement contracts,
achieving savings of hundreds of millions of dollars in the ppcurement of ash memory used in
printers assembled by Hewlett-Packard. In 2007, the third auhor and his colleagues launched a
variation of the supply chain trading competition focusing solely on the management of long-term,
quantity exible procurement contracts and one-o procurem ent contracts (Sardinha et al., 2009).

Teaching

Beyond its research impact, the TAC-SCM scenario has also cdnbuted to classroom education
around the world (US, Canada, the Netherlands, Brazil, UK, Australia, etc), both at the undergrad-
uate and graduate levels. Typically, students are requiredo either develop new entries from scratch
or develop and evaluate alternative designs for modules of given trading agent. In the process,
they gain hands-on experience with online learning and stodhstic optimization techniques. They
also learn to better appreciate the complexity associated wh competitive environments, where
the success of one's strategy depends on the strategies ofhets and how quickly one can adapt
to changes in these strategies. Having students work on TAC-SM agents or modules has also
proven to be an excellent way to expose students to softwarengineering concepts, especially when
they work in teams, with di erent members each in charge of developing and evaluating modules
or functionality whose performance is often dependent on mdules or functionality developed by
other team members. This type of work ts natually in a comput er science curriculum, but is less
appropriate for management science and economics students

As a result, games such as the MIT beer ganve(Sterman, 1989, 1992), are still the prevalent
teaching tools in business and management programs, despitheir simplistic setup. TAC SCM has

Shitp://beergame.mit.edu
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the potential to replace these games and expose students (dmmanagers) to much more dynamic
and complex supply chain scenarios. Getting there however iV require building an additional
layer of mixed initiative functionality, where human decision makers (students or managers) have
the ability to tweak high-level, human-oriented parameters, wile relying on underlying agent-based
decision support to process the very large number of optionand decisions necessary to implement
resulting strategies. Initial work on a mixed-initiative ve rsion of TAC SCM and the MinneTAC
trading agent is currently under way (Nelson et al., 2009).

Getting involved

A working trading agent is a complex piece of software. TAC S®A agents must not only make
coordinated decisions; they must also interact correctly \vith the game server, and typically they
must produce data needed for empirical research. The orgamers of the competition have worked
to keep the game interesting and to minimize the barrier to efry, by providing the game server
along with a software infrastructure that handles the agentto-server interface and does the basic
data management tasks. A simple \dummy" agent is included wih this infrastructure, forming a
foundation for more sophisticated agents. Teams whose agendo well in competition are strongly
encouraged to make their agents available to the community. As a result, a number of teams have
provided both binary and source for working agents that are gyni cantly more competitive than
the dummy agent. The availability of top-performing agents enables novel types of research, such
as the empirical game theory work of Jordan and Wellman (200Y.

Research requires data, and both research and agent develment depend on basic analysis
tools. The game infrastructure includes a tool for parsing he logs produced by the game server.
This tool provides a basic user interface that shows day-by-da activity in the procurement and
sales markets, along with bids, o ers, orders, inventory levels, factory utilization, bank account
balances, and other data. For example, Figure 7 shows the pduction and inventory display. The
log analysis tool is programmable with simple Scheme scripgt to enable data extraction, and is
distributed with sample code that dumps game data into a datebase for further analysis.

Figure 8 shows an example of a set of market-oriented analysisols built by students at CMU
on top of the basic log le parser. This tool is useful for undestanding market interactions among
agents, such as market share and bidding behavior.

The MinneTAC agent (Collins et al., 2008, 2009a), shown schmatically in Figure 9, is a com-
plete, easily con gured agent available in source form. Building a working agent on the MinneTAC
foundation is much less work than building a competitive agat on the lower-level framework that is
distributed with the TAC SCM server. As we can see from Figure9, MinneTAC uses a very di erent
design approach from the other agents we have examined. Thedpository acts as a \blackboard,"
and the various components interact only through the Repodory. The Oracle component is a
wrapper for a large number of small modules, called \Evaluabrs", that can be strung together as
speci ed in a con guration le to do the necessary analysis and prediction tasks requested by the
decision components. The actual coordination among decish components happens because they
share some of those Evaluators. Speci cally, both the Saledanager and the Supplier Manager
use sales quotas produced by one of the Evaluators.

5See http://www.sics.se/tac/showagents.php for the current list
"at http://tac.cs.umn.edu
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Figure 7: Log le analysis example.

Ultimately, the process of generating and analyzing data fom TAC SCM simulations requires
that many games be run. The simulation environment is desiged to separate the server from
the agents over network connections, and many agents are ngg compute-bound while they make
their daily decisions. This means that running games requies either a large cluster con guration,
or coordination of processes across multiple machines in aetwork environment. In addition, the
high variability of the game scenario coupled with random bdavior on the part of some agents
may require analyzing large numbers of games to reach statisally interesting conclusions. For
example, the game theory analysis described by Jordan et a[2007) required over 12,000 games.
The process of manually setting up and running such experim@s is daunting even for the most
dedicated graduate student. To address this problem, Colhs et al. (2009b) describe a framework
for managing multi-game experiments through a simple web-basd user interface.

A primary factor that makes the TAC SCM scenario interesting and challenging is the high
variability of market conditions within and across games. This variability drives up the number
of simulations required to achieve statistical signi cance when comparing agents or agent con gu-
rations. Because the game server generates its random behaw using pseudo-random sequences,
it is possible to \re-run" games when evaluating alternate agnt con gurations, as described by
Sodomka et al. (2007). The result is a dramatic reduction in he number of games needed in
an experiment design. The game server distributed through &ac.cs.umn.edu supports this level of
control.



Figure 8: Game analysis tools made available to competitordy Carnegie Mellon.
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Figure 9: MinneTAC: Coordination through the Repository, d etails depend on con guration.

Conclusion and future work

Organized competitions such as TAC SCM have been e ective tols for driving Al research into
a range of interesting, complex domains that are both soci# and economically important, and
di cult for a single research team to address. The rapid rise of internet-enabled business interac-
tions makes the supply-chain management domain, like many r&-world problem areas, increasingly
challenging for human decision making. At the same time, thecomplexity of such interactions is
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beyond the analytic scope of formal game theory. The results that evaluation of new approaches
to decision-making is very di cult in isolation. The multi-ye ar competition format, with active par-
ticipation of motivated teams of researchers and regular pblication of new techniques and results,
makes such evaluation possible. At the same time, the need taork with management science and
economics practitioners expands the scope of contributionfrom Al research and stimulates the Al
community with new and interesting challenges.

Agents that operate e ectively in the TAC SCM environment mu st be able to sense and model
their environment and predict their own impacts on that environment. They must be able to deal
with substantial uncertainty and limited visibility of the important features of their environment.
They must maximize their utilities in expectation, while carefully managing risk. They must make
a number of coordinated decisions within strict time constrints. Agents may engage in strategic
interactions with their competitors, through manipulatio n of the shared environment. After seven
years of competition, there is no clearly dominant approachto agent design and decision processes.
This is evident in the results of the 2009 competition, in which the two top agents very nearly
tied, using very di erent approaches. The DeepMaize agent fom the University of Michigan uses
very careful control of inventory and pro tability over a wi de range of market conditions, while the
TacTex agent from the University of Texas is more aggressiveind strategic, taking large risks in
building up inventory during low-demand periods when procurement prices are low, and exploiting
these inventories when demand recovers and procurement @es rise.

Over the past seven years, considerable progress has beendran developing e ective tech-
nigues and architectures to manage risk in dynamic supply chin environments, with models from
the TAC-SCM competition in uencing ongoing work at large companies such as HP. While research
in this area is far from over and there is still room for very spni cant advances, the TAC-SCM
community will also have to turn its attention to packaging m any of the technologies it has already
developed into human-oriented decision support tools. Thes tools will have to allow supply chain
managers to remain in control of key strategic decisions wie delegating many more minute, real-
time optimization decisions to agent-oriented functionality. To be e ective, this line of work will
have to identify a meaningful balance between the frequencynd level of details in supply chain
updates and decisions it exposes users to. This balance whiave to be su cient for supply chain
managers to feel that they remain in control of key sensitivedecisions where their own insight is
critical. Yet it should not overwhelm users with informatio n and decisions. Ultimately, developing
mixed initiative functionality that meets these requirements will be critical to the broad uptake of
TAC-SCM technology. Ongoing e orts in this area include work on a mixed-initiative version of
the MinneTAC agent and the TAC SCM competition (Nelson et al., 2009). Early work on devel-
oping mixed initiative supply chain decision support functionality was also detailed by Sadeh et al.
(2003b).
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